Performance Assessment of a High-Speed Railway Bridge through Operational Modal Analysis

工作模态分析 情态动词 可识别性 桥(图论) 模态试验 子空间拓扑 模态分析 结构健康监测 结构工程 振动 鉴定(生物学) 工程类 有限元模态分析 计算机科学 有限元法 声学 人工智能 机器学习 内科学 植物 化学 高分子化学 物理 生物 医学
作者
Xiao‐Mei Yang,Ting‐Hua Yi,Chunxu Qu,Hong‐Nan Li,Liu Hua
出处
期刊:Journal of Performance of Constructed Facilities [American Society of Civil Engineers]
卷期号:35 (6) 被引量:12
标识
DOI:10.1061/(asce)cf.1943-5509.0001669
摘要

Modal parameters are widely recognized as valuable indicators for evaluating the performance of railway bridges in structural health monitoring. A major challenge in the mode-based performance assessment is to obtain modal parameters reliably because operational factors may cause significant identification errors or reduce modal identifiability. To reduce the operational effects on mode-based assessment, vibration responses are divided according to excitation types, and then two subspace identification techniques are developed for identifying modal parameters of the railway bridge. If the bridge is only acted on by the ambient excitation, the stochastic subspace identification (SSI) is taken in this paper. If the bridge is mainly acted on by the train excitation, modal parameters are difficult to identify due to the regularly spaced and highly energetic axle loads. In this case, a deterministic stochastic subspace identification (DSSI) method is developed for improving the modal identifiability of the railway bridge under train action. The monitoring responses of a high-speed railway bridge are analyzed in this paper to track long-term modal parameters. Besides, variations of modal parameters that are related to environmental factors, operational conditions, modal orders, vibration directions, and member types are extensively compared. The results show that modal parameters can be well-identified even though the nonwhite noise excitation exists, and the performance assessment can be well achieved through determining the optimal modal parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助cccc采纳,获得10
刚刚
27发布了新的文献求助10
1秒前
3秒前
量子星尘发布了新的文献求助10
5秒前
7秒前
cyj完成签到,获得积分10
7秒前
谭t完成签到,获得积分20
8秒前
10秒前
汉堡包应助科研小趴菜采纳,获得10
10秒前
小二郎应助调皮正豪采纳,获得10
12秒前
谭t发布了新的文献求助10
13秒前
14秒前
mayee完成签到,获得积分10
14秒前
hanspro发布了新的文献求助10
16秒前
泊声发布了新的文献求助10
17秒前
所所应助chen采纳,获得10
19秒前
20秒前
量子星尘发布了新的文献求助10
21秒前
22秒前
24秒前
27完成签到,获得积分10
24秒前
25秒前
25秒前
打打应助洛希采纳,获得10
26秒前
26秒前
chen关注了科研通微信公众号
26秒前
27秒前
大个应助QIU采纳,获得10
28秒前
全佳伟发布了新的文献求助10
28秒前
29秒前
英俊的铭应助秣旎采纳,获得10
29秒前
jiangsisi完成签到,获得积分10
30秒前
30秒前
沉默是金发布了新的文献求助10
30秒前
科研通AI5应助Markic采纳,获得10
30秒前
31秒前
Evander发布了新的文献求助20
31秒前
丘比特应助泊声采纳,获得10
31秒前
晊响完成签到 ,获得积分10
31秒前
DenDan发布了新的文献求助10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5059688
求助须知:如何正确求助?哪些是违规求助? 4284352
关于积分的说明 13351080
捐赠科研通 4101792
什么是DOI,文献DOI怎么找? 2245799
邀请新用户注册赠送积分活动 1251584
关于科研通互助平台的介绍 1182238