Additively Manufactured Deformation‐Recoverable and Broadband Sound‐Absorbing Microlattice Inspired by the Concept of Traditional Perforated Panels

材料科学 宽带 粘弹性 吸收(声学) 声学 变形(气象学) 降噪系数 机械工程 噪声控制 计算机科学 复合材料 电信 工程类 多孔性 物理 降噪
作者
Xinwei Li,Xiang Yu,Wei Zhai
出处
期刊:Advanced Materials [Wiley]
卷期号:33 (44): e2104552-e2104552 被引量:129
标识
DOI:10.1002/adma.202104552
摘要

Abstract Noise pollution is a highly detrimental daily health hazard. Sound absorbers, such as the traditionally used perforated panels, find widespread applications. Nonetheless, modern product designs call for material novelties with enhanced performance and multifunctionality. The advent of additive manufacturing has brought about the possibilities of functional materials design to be based on structures rather than chemistry. With this in mind, herein, the traditional concept of perforated panels is revisited and is incorporated with additive manufacturing for the development of a novel microlattice‐based sound absorber with additional impact resistance multifunctionality. The structurally optimized microlattice presents excellent broadband absorption with an averaged experimental absorption coefficient of 0.77 across a broad frequency range from 1000 to 6300 Hz. Extensive simulation and experiments reveal absorption mechanisms to be based on viscous flow, thermal and structural damping dissipations while broadband capabilities to be on multiple resonance modes working in tandem. High deformation recovery up to 30% strain is also possible from the strut‐based design and viscoelasticity of the base material. Overall, the excellent properties of the microlattice overcome tradeoffs commonly found in conventional absorbers. Additionally, this work aims to present a new paradigm: revisiting old concepts for the developments of novel materials using contemporary methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangjialin完成签到,获得积分10
刚刚
Ava应助zhangpanny采纳,获得10
刚刚
彭于晏应助Pual采纳,获得10
1秒前
科研通AI6应助帆帆采纳,获得10
1秒前
shyunk发布了新的文献求助10
1秒前
1秒前
星辰大海应助核桃采纳,获得30
1秒前
领导范儿应助核桃采纳,获得10
1秒前
科研通AI6应助核桃采纳,获得10
1秒前
科研通AI6应助核桃采纳,获得10
2秒前
科目三应助核桃采纳,获得30
2秒前
科研通AI6应助核桃采纳,获得10
2秒前
Ava应助核桃采纳,获得10
2秒前
Lucas应助核桃采纳,获得10
2秒前
善学以致用应助核桃采纳,获得30
2秒前
2秒前
JamesPei应助核桃采纳,获得10
2秒前
2秒前
3秒前
3秒前
3秒前
史文韬完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
zzz发布了新的文献求助10
4秒前
自觉紫安发布了新的文献求助30
4秒前
shyunk发布了新的文献求助10
4秒前
酷炫静枫发布了新的文献求助10
4秒前
星星完成签到,获得积分20
4秒前
5秒前
5秒前
5秒前
5秒前
独特的易形完成签到 ,获得积分10
6秒前
yuhui发布了新的文献求助20
6秒前
一路硕博发布了新的文献求助10
6秒前
自信的水蜜桃完成签到,获得积分10
7秒前
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5662021
求助须知:如何正确求助?哪些是违规求助? 4840532
关于积分的说明 15098074
捐赠科研通 4820518
什么是DOI,文献DOI怎么找? 2580000
邀请新用户注册赠送积分活动 1534212
关于科研通互助平台的介绍 1492878