Simultaneously improving reaction coverage and computational cost in automated reaction prediction tasks

计算机科学 瓶颈 初始化 背景(考古学) 趋同(经济学) 反应速率 生化工程 化学 工程类 催化作用 程序设计语言 经济 古生物学 嵌入式系统 生物 生物化学 经济增长
作者
Qiyuan Zhao,Brett M. Savoie
出处
期刊:Nature Computational Science [Nature Portfolio]
卷期号:1 (7): 479-490 被引量:78
标识
DOI:10.1038/s43588-021-00101-3
摘要

Automated reaction prediction has the potential to elucidate complex reaction networks for applications ranging from combustion to materials degradation, but computational cost and inconsistent reaction coverage are still obstacles to exploring deep reaction networks. Here we show that cost can be reduced and reaction coverage can be increased simultaneously by relatively straightforward modifications of the reaction enumeration, geometry initialization and transition state convergence algorithms that are common to many prediction methodologies. These components are implemented in the context of yet another reaction program (YARP), our reaction prediction package with which we report reaction discovery benchmarks for organic single-step reactions, thermal degradation of a γ-ketohydroperoxide, and competing ring-closures in a large organic molecule. Compared with recent benchmarks, YARP (re)discovers both established and unreported reaction pathways and products while simultaneously reducing the cost of reaction characterization by nearly 100-fold and increasing convergence of transition states. This combination of ultra-low cost and high reaction coverage creates opportunities to explore the reactivity of larger systems and more complex reaction networks for applications such as chemical degradation, where computational cost is a bottleneck. This work demonstrates that large gains still exist in accelerating and improving the coverage of reaction prediction algorithms. These advances create opportunities for computationally exploring deeper and broader reaction networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhangliangfu完成签到 ,获得积分10
刚刚
3秒前
3秒前
kkk完成签到 ,获得积分10
4秒前
4秒前
机灵的煎蛋完成签到,获得积分10
5秒前
laohu发布了新的文献求助30
6秒前
伶俐的星月完成签到,获得积分10
7秒前
可口可乐完成签到,获得积分10
12秒前
xiaoming完成签到,获得积分10
12秒前
14秒前
egoistMM完成签到,获得积分10
16秒前
16秒前
17秒前
lylyspeechless完成签到,获得积分10
18秒前
sochiyuen发布了新的文献求助10
19秒前
JY'完成签到,获得积分10
21秒前
小马甲应助科研通管家采纳,获得10
22秒前
22秒前
JamesPei应助科研通管家采纳,获得10
22秒前
研友_VZG7GZ应助科研通管家采纳,获得10
22秒前
小马甲应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得100
22秒前
pluto应助科研通管家采纳,获得10
22秒前
852应助科研通管家采纳,获得10
23秒前
23秒前
CC应助科研通管家采纳,获得10
23秒前
SciGPT应助科研通管家采纳,获得30
23秒前
orixero应助科研通管家采纳,获得10
23秒前
彭于晏应助科研通管家采纳,获得10
23秒前
田様应助科研通管家采纳,获得10
23秒前
23秒前
Jasper应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
23秒前
24秒前
24秒前
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Biodiversity Third Edition 2023 2000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 800
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4766001
求助须知:如何正确求助?哪些是违规求助? 4103814
关于积分的说明 12695474
捐赠科研通 3821343
什么是DOI,文献DOI怎么找? 2109140
邀请新用户注册赠送积分活动 1133631
关于科研通互助平台的介绍 1014213