Simultaneously improving reaction coverage and computational cost in automated reaction prediction tasks

计算机科学 瓶颈 初始化 背景(考古学) 趋同(经济学) 反应速率 生化工程 化学 工程类 催化作用 程序设计语言 经济 古生物学 嵌入式系统 生物 生物化学 经济增长
作者
Qiyuan Zhao,Brett M. Savoie
出处
期刊:Nature Computational Science [Nature Portfolio]
卷期号:1 (7): 479-490 被引量:68
标识
DOI:10.1038/s43588-021-00101-3
摘要

Automated reaction prediction has the potential to elucidate complex reaction networks for applications ranging from combustion to materials degradation, but computational cost and inconsistent reaction coverage are still obstacles to exploring deep reaction networks. Here we show that cost can be reduced and reaction coverage can be increased simultaneously by relatively straightforward modifications of the reaction enumeration, geometry initialization and transition state convergence algorithms that are common to many prediction methodologies. These components are implemented in the context of yet another reaction program (YARP), our reaction prediction package with which we report reaction discovery benchmarks for organic single-step reactions, thermal degradation of a γ-ketohydroperoxide, and competing ring-closures in a large organic molecule. Compared with recent benchmarks, YARP (re)discovers both established and unreported reaction pathways and products while simultaneously reducing the cost of reaction characterization by nearly 100-fold and increasing convergence of transition states. This combination of ultra-low cost and high reaction coverage creates opportunities to explore the reactivity of larger systems and more complex reaction networks for applications such as chemical degradation, where computational cost is a bottleneck. This work demonstrates that large gains still exist in accelerating and improving the coverage of reaction prediction algorithms. These advances create opportunities for computationally exploring deeper and broader reaction networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
善学以致用应助香蕉梨愁采纳,获得10
1秒前
Jasper应助zzj采纳,获得10
2秒前
yeye发布了新的文献求助10
2秒前
4秒前
朱光辉发布了新的文献求助100
4秒前
科目三应助小乖乖采纳,获得20
5秒前
四年完成签到,获得积分20
5秒前
嗯嗯你说完成签到,获得积分10
5秒前
5秒前
田様应助安好采纳,获得10
6秒前
123哈哈哈321完成签到,获得积分20
6秒前
T510完成签到,获得积分10
7秒前
tll应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得30
8秒前
tll应助科研通管家采纳,获得10
8秒前
8R60d8应助科研通管家采纳,获得10
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得10
9秒前
tll应助科研通管家采纳,获得10
9秒前
8R60d8应助科研通管家采纳,获得10
9秒前
TingtingGZ完成签到,获得积分10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
天天快乐应助科研通管家采纳,获得10
9秒前
tll应助科研通管家采纳,获得10
9秒前
星辰大海应助科研通管家采纳,获得10
9秒前
大个应助科研通管家采纳,获得10
9秒前
tll应助科研通管家采纳,获得10
9秒前
华仔应助科研通管家采纳,获得10
9秒前
Jemmy应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
蛮吉完成签到,获得积分10
9秒前
qingsyxuan完成签到,获得积分10
10秒前
11秒前
yurunxintian完成签到,获得积分10
11秒前
john发布了新的文献求助10
16秒前
18秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 540
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Chinese Buddhist Monasteries: Their Plan and Its Function As a Setting for Buddhist Monastic Life 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4117104
求助须知:如何正确求助?哪些是违规求助? 3655656
关于积分的说明 11575578
捐赠科研通 3358671
什么是DOI,文献DOI怎么找? 1845166
邀请新用户注册赠送积分活动 910636
科研通“疑难数据库(出版商)”最低求助积分说明 827016