Dual-region radiomics signature: Integrating primary tumor and lymph node computed tomography features improves survival prediction in esophageal squamous cell cancer

无线电技术 医学 鳞状细胞癌 淋巴结 肿瘤科 计算机断层摄影术 食管鳞状细胞癌 签名(拓扑) 放射科 癌症 内科学 病理 食管癌 几何学 数学
作者
Nian Lu,Weijing Zhang,Lu Dong,Junying Chen,Yanlin Zhu,Shenghai Zhang,Jianhua Fu,Shaohan Yin,Zhicheng Li,Chuanmiao Xie
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:208: 106287-106287 被引量:37
标识
DOI:10.1016/j.cmpb.2021.106287
摘要

• Radiomics is to provide and combine quantitative features of medical imaging to characterize tumor phenotypes, which may contribute to oncologic classification and prediction. • Dual-region signature, derived from primary neoplasm and regional lymph node from CT images, could offer incremental prognostic value over existing single radiomics signature for predicting overall survival in patients with esophageal squamous cell cancer. • To provide a promising tool for selecting appropriate treatment strategies and improve clinical outcomes of patients with ESCC. Preoperative prognostic biomarkers to guide individualized therapy are still in demand in esophageal squamous cell cancer (ESCC). Some studies reported that radiomic analysis based on CT images has been successfully performed to predict individual survival in EC. The aim of this study was to assess whether combining radiomics features from primary tumor and regional lymph nodes predicts overall survival (OS) better than using single-region features only, and to investigate the incremental value of the dual-region radiomics signature. In this retrospective study, three radiomics signatures were built from preoperative enhanced CT in a training cohort (n = 200) using LASSO Cox model. Associations between each signature and survival was assessed on a validation cohort (n = 107). Prediction accuracy for the three signatures was compared. By constructing a clinical nomogram and a radiomics-clinical nomogram, incremental prognostic value of the radiomics signature over clinicopathological factors in OS prediction was assessed in terms of discrimination, calibration, reclassification and clinical usefulness. The dual-region radiomic signature was an independent factor, significantly associated with OS (HR: 1.869, 95% CI: 1.347, 2.592, P = 1.82e-04), which achieved better OS (C-index: 0.611) prediction either than the single-region signature (C-index:0.594-0.604). The resulted dual-region radiomics-clinical nomogram achieved the best discriminative ability in OS prediction (C-index:0.700). Compared with the clinical nomogram, the radiomics-clinical nomogram improved the calibration and classification accuracy for OS prediction with a total net reclassification improvement (NRI) of 26.9% ( P =0.008) and integrated discrimination improvement (IDI) of 6.8% ( P <0.001). The dual-region radiomic signature is an independent prognostic marker and outperforms single-region signature in OS for ESCC patients. Integrating the dual-region radiomics signature and clinicopathological factors improves OS prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助枫桥夜泊采纳,获得10
1秒前
早睡早起发布了新的文献求助10
1秒前
4秒前
5秒前
6秒前
6秒前
不困还能肝给不困还能肝的求助进行了留言
6秒前
7秒前
pancake发布了新的文献求助30
7秒前
FashionBoy应助独特的绯采纳,获得10
8秒前
osh111发布了新的文献求助10
8秒前
李健应助888采纳,获得10
9秒前
JusLovin发布了新的文献求助10
9秒前
10秒前
aqa发布了新的文献求助10
10秒前
Tonny发布了新的文献求助10
10秒前
Mr贱包子发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
12秒前
13秒前
13秒前
14秒前
搞怪灯泡完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
JusLovin完成签到,获得积分10
15秒前
hehehaha完成签到,获得积分10
16秒前
绒绒完成签到,获得积分10
17秒前
华仔应助李绿真采纳,获得10
17秒前
17秒前
百宝发布了新的文献求助10
17秒前
18秒前
18秒前
Akim应助早睡早起采纳,获得10
18秒前
blessing发布了新的文献求助10
20秒前
研狗完成签到,获得积分10
20秒前
20秒前
腼腆的小刺猬完成签到,获得积分10
20秒前
枫桥夜泊发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5528321
求助须知:如何正确求助?哪些是违规求助? 4617831
关于积分的说明 14560868
捐赠科研通 4556701
什么是DOI,文献DOI怎么找? 2497059
邀请新用户注册赠送积分活动 1477315
关于科研通互助平台的介绍 1448619