Predicting the risk of stroke in patients with late-onset epilepsy: A machine learning approach

癫痫 冲程(发动机) 医学 物理医学与康复 心理学 神经科学 工程类 机械工程
作者
Karel Kostev,Tong Wu,Yue Wang,Kal Chaudhuri,Christian Tanislav
出处
期刊:Epilepsy & Behavior [Elsevier BV]
卷期号:122: 108211-108211 被引量:11
标识
DOI:10.1016/j.yebeh.2021.108211
摘要

Background The goal of this cohort study was to estimate the predictors for ischemic stroke in patients with epilepsy in a large database containing data from general practitioners in Germany using machine learning methods. Methods This retrospective cohort study included 11,466 patients aged ≥ 60 years with an initial diagnosis of epilepsy in 1182 general practices in Germany between January 2010 and December 2018 from the IQVIA Disease Analyzer database. The Sub-Population Optimization and Modeling Solutions (SOMS) tool was used to identify subgroups at a higher risk of stroke than the overall population with epilepsy based on 37 different variables. Results A total of seven variables were considered important. Four co-diagnoses (diabetes, hypertension, heart failure, and alcohol dependence) were by far the strongest predictors with a combined predictive ability of more than 90%, whereby diabetes (41.4%) was the strongest predictor, followed by hypertension (35.0%) and heart failure (11.8%). The predictive importance of male gender was only 1.5%, and age was not recognized as an important predictor. Finally, the prescribed AEDs levetiracetam, with a predictive importance of 5.0%, and valproate, with 2.7%, were found to be weak predictors. Conclusion The stroke risk in patients with epilepsy was relatively high and could be predicted based on comorbidities such as diabetes mellitus, hypertension, heart failure, and alcohol dependence. Knowing and addressing these factors may help reduce the risk of stroke in patients with epilepsy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胖心怡发布了新的文献求助10
刚刚
荡起双桨完成签到,获得积分20
1秒前
重要的酸奶完成签到,获得积分10
1秒前
1秒前
1秒前
255关闭了255文献求助
3秒前
3秒前
万能图书馆应助学术疯子采纳,获得10
3秒前
4秒前
4秒前
4秒前
ww完成签到,获得积分10
5秒前
5秒前
独特的忆彤完成签到 ,获得积分10
6秒前
乘风破浪完成签到,获得积分10
7秒前
yuanziqiao发布了新的文献求助10
7秒前
7秒前
白云垛完成签到,获得积分20
7秒前
aimio完成签到 ,获得积分10
8秒前
心想柿橙发布了新的文献求助10
8秒前
mmmi完成签到,获得积分10
8秒前
ansei完成签到,获得积分20
9秒前
DKN发布了新的文献求助10
9秒前
麻麻完成签到 ,获得积分20
10秒前
11秒前
12秒前
577完成签到,获得积分10
12秒前
12秒前
爆米花应助mmmi采纳,获得10
12秒前
无所谓叫什么完成签到,获得积分10
12秒前
13秒前
Meihi_Uesugi完成签到,获得积分10
13秒前
DKN完成签到,获得积分10
13秒前
14秒前
14秒前
15秒前
15秒前
lhy完成签到,获得积分10
17秒前
心想柿橙完成签到,获得积分10
17秒前
希望天下0贩的0应助XMH采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
创造互补优势国外有人/无人协同解析 300
The Great Psychology Delusion 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4647252
求助须知:如何正确求助?哪些是违规求助? 4036721
关于积分的说明 12485451
捐赠科研通 3726028
什么是DOI,文献DOI怎么找? 2056519
邀请新用户注册赠送积分活动 1087431
科研通“疑难数据库(出版商)”最低求助积分说明 968899