Behavioral and Physiological Signals-Based Deep Multimodal Approach for Mobile Emotion Recognition

情绪识别 计算机科学 人工智能 心理学 语音识别 认知心理学
作者
Kangning Yang,Chaofan Wang,Yue Gu,Zhanna Sarsenbayeva,Benjamin Tag,Tilman Dingler,Greg Wadley,Jorge Gonçalves
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:14 (2): 1082-1097 被引量:51
标识
DOI:10.1109/taffc.2021.3100868
摘要

With the rapid development of mobile and wearable devices, it is increasingly possible to access users' affective data in a more unobtrusive manner. On this basis, researchers have proposed various systems to recognize user's emotional states. However, most of these studies rely on traditional machine learning techniques and a limited number of signals, leading to systems that either do not generalize well or would frequently lack sufficient information for emotion detection in realistic scenarios. In this paper, we propose a novel attention-based LSTM system that uses a combination of sensors from a smartphone (front camera, microphone, touch panel) and a wristband (photoplethysmography, electrodermal activity, and infrared thermopile sensor) to accurately determine user's emotional states. We evaluated the proposed system by conducting a user study with 45 participants. Using collected behavioral (facial expression, speech, keystroke) and physiological (blood volume, electrodermal activity, skin temperature) affective responses induced by visual stimuli, our system was able to achieve an average accuracy of 89.2 percent for binary positive and negative emotion classification under leave-one-participant-out cross-validation. Furthermore, we investigated the effectiveness of different combinations of data signals to cover different scenarios of signal availability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助丫丫采纳,获得150
2秒前
2秒前
3秒前
4秒前
烟花应助司徒不二采纳,获得10
4秒前
贤惠的白开水完成签到 ,获得积分10
4秒前
4秒前
斯文败类应助George采纳,获得10
4秒前
View完成签到,获得积分10
5秒前
5秒前
mof发布了新的文献求助10
6秒前
所所应助健忘姝采纳,获得10
6秒前
6秒前
英俊的铭应助yangsouth采纳,获得10
6秒前
周周发布了新的文献求助10
7秒前
View发布了新的文献求助10
8秒前
8秒前
8秒前
冬日暖阳发布了新的文献求助10
10秒前
直率怡完成签到,获得积分10
11秒前
彭于晏应助mof采纳,获得10
12秒前
bur应助科研通管家采纳,获得10
12秒前
不想干活应助科研通管家采纳,获得10
12秒前
烟花应助科研通管家采纳,获得10
12秒前
bkagyin应助科研通管家采纳,获得10
12秒前
Lucas应助科研通管家采纳,获得10
12秒前
慕青应助科研通管家采纳,获得10
12秒前
不想干活应助科研通管家采纳,获得10
12秒前
柏林寒冬应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
英姑应助科研通管家采纳,获得10
12秒前
不想干活应助科研通管家采纳,获得10
13秒前
13秒前
嘀嘀咕咕给嘀嘀咕咕的求助进行了留言
13秒前
xmyyy发布了新的文献求助10
13秒前
Johnny完成签到,获得积分10
14秒前
GWZZ发布了新的文献求助10
14秒前
14秒前
淮上有秋山完成签到,获得积分10
14秒前
15秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 820
The Geometry of the Moiré Effect in One, Two, and Three Dimensions 500
含极性四面体硫代硫酸基团的非线性光学晶体的探索 500
Византийско-аланские отно- шения (VI–XII вв.) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4182288
求助须知:如何正确求助?哪些是违规求助? 3718442
关于积分的说明 11720826
捐赠科研通 3398069
什么是DOI,文献DOI怎么找? 1864356
邀请新用户注册赠送积分活动 922178
科研通“疑难数据库(出版商)”最低求助积分说明 833873