Detecting Depression Through Gait Data: Examining the Contribution of Gait Features in Recognizing Depression

萧条(经济学) 逻辑回归 支持向量机 步态 机器学习 人工智能 物理医学与康复 计算机科学 领域(数学分析) 心理学 医学 数学 数学分析 宏观经济学 经济
作者
Yameng Wang,Jingying Wang,Xiaoqian Liu,Tingshao Zhu
出处
期刊:Frontiers in Psychiatry [Frontiers Media]
卷期号:12 被引量:31
标识
DOI:10.3389/fpsyt.2021.661213
摘要

While depression is one of the most common mental disorders affecting more than 300 million people across the world, it is often left undiagnosed. This paper investigated the association between depression and gait characteristics with the aim to assist in diagnosing depression. Our dataset consisted of 121 healthy people and 126 patients with depression who diagnosed by psychiatrists according to the Diagnostic and Statistical Manual of Mental Disorders. Spatiotemporal, temporal-domain, and frequency-domain features were extracted based on the walking data of 247 participants recorded by Microsoft Kinect (Version 2). Multiple logistic regression was used to analyze the variance of spatiotemporal (12.55%), time-domain (58.36%), and frequency-domain features (60.71%) on recognizing depression based on Nagelkerke's R2 measure, respectively. The contributions of the different types of features were further explored by building machine learning models by using support vector machine algorithm. All the combinations of the three types of gait features were used as training data of machine learning models, respectively. The results showed that the model trained using only time- and frequency-domain features demonstrated the same best performance compared to the model trained using all the features (sensitivity = 0.94, specificity = 0.91, and AUC = 0.93). These results indicated that depression could be effectively recognized through gait analysis. This approach is a step forward toward developing low-cost, non-intrusive solutions for real-time depression recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qing完成签到,获得积分10
刚刚
安安完成签到 ,获得积分10
刚刚
小咖张发布了新的文献求助10
1秒前
秦兴虎发布了新的文献求助10
1秒前
3秒前
3秒前
lareina完成签到 ,获得积分10
3秒前
3秒前
3秒前
3秒前
老婆婆完成签到,获得积分10
4秒前
4秒前
5秒前
CYT完成签到,获得积分10
6秒前
小蘑菇应助YC采纳,获得10
6秒前
Akim应助青藤采纳,获得10
6秒前
szc发布了新的文献求助10
7秒前
7秒前
烂漫的飞松完成签到,获得积分10
8秒前
ww发布了新的文献求助10
9秒前
Tutu完成签到,获得积分10
9秒前
天真初蝶应助清爽的含灵采纳,获得30
9秒前
情怀应助锂离子采纳,获得10
9秒前
852应助冷静妙海采纳,获得10
9秒前
han完成签到,获得积分10
9秒前
9秒前
bx发布了新的文献求助10
10秒前
凸迩丝儿发布了新的文献求助10
10秒前
科研通AI5应助娇气的友易采纳,获得10
11秒前
欣欣欣欣关注了科研通微信公众号
11秒前
dycdz完成签到,获得积分10
11秒前
在水一方应助ooo娜采纳,获得10
11秒前
852应助HermanCheney采纳,获得10
11秒前
Orange应助酷酷亦凝采纳,获得10
12秒前
13秒前
FLN发布了新的文献求助10
13秒前
脑洞疼应助秦兴虎采纳,获得30
15秒前
超帅的碱完成签到,获得积分10
16秒前
16秒前
MUZI完成签到,获得积分10
16秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3813827
求助须知:如何正确求助?哪些是违规求助? 3358242
关于积分的说明 10392842
捐赠科研通 3075520
什么是DOI,文献DOI怎么找? 1689390
邀请新用户注册赠送积分活动 812756
科研通“疑难数据库(出版商)”最低求助积分说明 767387