CXCR4 Drives Lympho-Myeloid Fate of Hematopoietic Progenitors Via mTOR and Mitochondrial Metabolic Pathways

生物 髓样 造血 祖细胞 细胞生物学 干细胞 骨髓 PI3K/AKT/mTOR通路 免疫学 信号转导
作者
Vincent Rondeau,Amélie Bonaud,Zeina Abou-Nader,Julia P. Lemos,Vanessa Gourhand,Marc Delord,Ghislain Bidaut,Adrienne Anginot,Nathalie M. Mazure,David H. McDermott,Véronique Parietti-Montcuquet,Niclas Setterblad,Nicolas Dulphy,Françoise Bachelerie,Daniel Stockholm,Michel Aurrand-Lions,Philip M. Murphy,Marion Espéli,Stéphane Mancini,Karl Balabanian
出处
期刊:Blood [Elsevier BV]
卷期号:138 (Supplement 1): 2150-2150
标识
DOI:10.1182/blood-2021-149312
摘要

Abstract Blood production is a tightly regulated process that starts with hematopoietic stem cells (HSCs). In adults, HSCs are unique in their capacity to self-renew and replenish the entire blood system through production of a series of increasingly committed progenitor cells within the bone marrow (BM) microenvironment. HSCs form a rare, quiescent population that displays a metabolism skewed towards anaerobic glycolysis at the expense of mitochondrial oxidative phosphorylation (OXPHOS) to preserve its quiescent state and long-term reconstitution capacity. However, when HSCs differentiate, they undergo a metabolic switch from anaerobic glycolysis to mitochondrial OXPHOS, a process that is in part mediated by the metabolic sensor mTOR. It is well-established that HSCs in the BM adapt the production of myeloid and lymphoid cells depending on the needs of the body and that metabolic plasticity is a critical driver of HSC fate decisions. This has never been assessed for multipotent progenitors (MPPs) which constitute the stage at which the major divergence of lymphoid and myeloid lineages occurs. In mice, common lymphoid progenitors (CLPs) and common myeloid progenitors (CMPs) are generated from phenotypically and functionally distinct subpopulations of lineage-biased MPPs, i.e. MPP2 and MPP3 are reported as distinct myeloid-biased MPP subsets that operate together with lymphoid-primed MPP4 to control blood leukocyte production. This question is thus of paramount importance to understand how the lympho-myeloid specification process is regulated. Signaling by the G protein-coupled receptor CXCR4 on MPPs in response to stimulation by its natural ligand, the chemokine CXCL12, produced by BM perivascular stromal cells constitutes a key pathway through which the niches and MPPs communicate. However, the mechanisms whereby CXCR4 signaling regulates MPP specification are still unknown. We addressed this point using BM samples of patients with WHIM Syndrome (WS), a rare immunodeficiency caused by inherited heterozygous autosomal gain-of-CXCR4-function mutations affecting desensitization of CXCR4 and characterized by chronic lympho-neutropenia, as well as a unique WS mouse model which phenocopies severe pan-leukopenia. We unraveled myeloid skewing of the hematopoietic stem and progenitor cell (HSPC) compartment in BM of patients with WS and of WS mice. This relied on CXCR4 signaling strength that controls the output of the lymphoid and myeloid lineages by coordinating the composition and molecular identity of the MPP compartment. The fate of the lymphoid-biased MPP4 subset was central in such a process. Indeed, CXCR4 signaling termination was required for efficient generation and maintenance of the MPP4 pool, while regulating intrinsically their cell cycle status and lymphoid-myeloid gene landscape. In fact, we demonstrated for the first time that enhanced mTOR signaling, accumulation of damaged mitochondria and overactive OXPHOS-driven metabolism promoted cell-autonomous molecular changes that reprogram mutant MPP4 away from lymphoid differentiation. Consistent with this, in vivo chronic treatment with the CXCR4 antagonist AMD3100/Plerixafor or the mTOR inhibitor Rapamycin normalized mitochondrial metabolism and MPP4 differentiation. Thus, our study shows that CXCR4 signaling acts through the mTOR pathway as an essential gatekeeper for integrity of the mitochondrial machinery, which in turn controls lymphoid potential of MPP4. Disclosures No relevant conflicts of interest to declare.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
songge完成签到,获得积分10
1秒前
Cherish应助孔雀翎采纳,获得10
1秒前
qqy发布了新的文献求助10
4秒前
展会恩完成签到,获得积分10
5秒前
橘络完成签到 ,获得积分10
6秒前
6秒前
Kathy完成签到,获得积分10
7秒前
斯文的子默完成签到,获得积分10
8秒前
雪白鸿涛发布了新的文献求助10
12秒前
JamesPei应助苹果觅夏采纳,获得10
13秒前
15秒前
御风完成签到,获得积分20
16秒前
17秒前
科研通AI5应助jzyy采纳,获得10
17秒前
科目三应助御风采纳,获得10
19秒前
动漫大师发布了新的文献求助10
20秒前
123发布了新的文献求助10
21秒前
22秒前
ajun完成签到,获得积分10
23秒前
葛擎苍发布了新的文献求助10
23秒前
小蓝的科研生活完成签到,获得积分10
24秒前
科研通AI5应助123采纳,获得10
25秒前
温谷完成签到 ,获得积分10
25秒前
6633发布了新的文献求助10
25秒前
26秒前
鸣风发布了新的文献求助10
26秒前
大大大大管子完成签到 ,获得积分10
26秒前
zhy完成签到,获得积分10
27秒前
BINBIN完成签到 ,获得积分10
28秒前
28秒前
NexusExplorer应助qqy采纳,获得10
29秒前
123完成签到,获得积分10
29秒前
30秒前
隐形曼青应助zhangxinxin采纳,获得10
30秒前
six完成签到,获得积分10
31秒前
鹿梦发布了新的文献求助10
31秒前
Zyl完成签到 ,获得积分10
32秒前
FashionBoy应助怕黑香菇采纳,获得10
32秒前
jzyy发布了新的文献求助10
32秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781132
求助须知:如何正确求助?哪些是违规求助? 3326623
关于积分的说明 10227813
捐赠科研通 3041744
什么是DOI,文献DOI怎么找? 1669585
邀请新用户注册赠送积分活动 799104
科研通“疑难数据库(出版商)”最低求助积分说明 758751