Detection of Flow Based Anomaly in OpenFlow Controller: Machine Learning Approach in Software Defined Networking

OpenFlow 计算机科学 前进飞机 特征选择 软件定义的网络 异常检测 人工智能 机器学习 分类器(UML) 软件 控制器(灌溉) 网络数据包 数据挖掘 分布式计算 计算机网络 操作系统 生物 农学
作者
Samrat Kumar Dey,Md. Mahbubur Rahman,Md. Raihan Uddin
标识
DOI:10.1109/ceeict.2018.8628105
摘要

Software Defined Networking (SDN) has come to prominence in recent years and demonstrates an enormous potential in shaping the future of networking by separating control plane from data plane. OpenFlow is the first and most widely used protocol that makes this separation possible in the first place. As a newly emerged technology, SDN has its inherent security threats that can be eliminated or at least mitigated by securing the OpenFlow controller that manages flow control in SDN. SDN provides us a chance to strengthen our network security by decoupling its control plane and data plane. At this level, there also exists some certain risk, which is associated with this technology. In this research, a flow based anomaly detection method in OpenFlow controller have been approached by using machine-learning algorithms in SDN architecture. In order to improve the classifier performance, some feature selection methods namely Info Gain, Gain Ratio, CFS Subset Evaluator, Symmetric Uncertainty, and Chi-square test have been applied as a processing of dataset. A full dataset of 41 features and a reduced dataset has experimented. A dataset with feature selection ensures the highest accuracy of nearly 82% with Random Forest classifier using Gain Ratio feature selection Evaluator. Experimental results ratify that machine-learning approach with feature selection method indices strong potential for the detection of flow based anomaly in OpenFlow controller.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助暴扣三米线采纳,获得10
刚刚
pikachu发布了新的文献求助10
刚刚
半富半莲发布了新的文献求助10
刚刚
刚刚
赘婿应助2623196525采纳,获得10
1秒前
116发布了新的文献求助10
1秒前
1秒前
Ava应助求知的周采纳,获得10
1秒前
xjcy发布了新的文献求助10
2秒前
樊尔风发布了新的文献求助10
3秒前
3秒前
慕昊强完成签到,获得积分10
3秒前
Jessy完成签到,获得积分10
4秒前
我是老大应助明理的青寒采纳,获得10
5秒前
ZPXzz发布了新的文献求助200
5秒前
烟花应助白日梦我采纳,获得10
5秒前
长心发布了新的文献求助30
5秒前
笨笨绿柳发布了新的文献求助10
5秒前
科研通AI5应助支雨泽采纳,获得10
6秒前
peiter完成签到 ,获得积分10
6秒前
第二只羽毛完成签到,获得积分10
6秒前
子车茗应助半富半莲采纳,获得20
7秒前
8秒前
sine_mora发布了新的文献求助10
8秒前
NexusExplorer应助YuF采纳,获得10
8秒前
天天开心完成签到,获得积分10
8秒前
科研通AI5应助王ccccc采纳,获得10
9秒前
xjcy发布了新的文献求助10
10秒前
11秒前
11秒前
clown应助在封我就急眼啦采纳,获得10
11秒前
11秒前
zz完成签到,获得积分20
11秒前
科研通AI5应助LY采纳,获得10
11秒前
11秒前
12秒前
李健应助优秀的荠采纳,获得10
12秒前
冰魂应助tkurds采纳,获得10
12秒前
Jessy发布了新的文献求助30
13秒前
SYLH应助zfihead采纳,获得10
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796841
求助须知:如何正确求助?哪些是违规求助? 3341991
关于积分的说明 10309774
捐赠科研通 3058808
什么是DOI,文献DOI怎么找? 1678465
邀请新用户注册赠送积分活动 806054
科研通“疑难数据库(出版商)”最低求助积分说明 762909