已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Breath analysis in detecting epilepsy

癫痫 医学 气体分析呼吸 假阳性悖论 精神科 计算机科学 人工智能 解剖
作者
Dieuwke van Dartel,H. Jurgen Schelhaas,Albert Colon,Kuan H. Kho,Cecile C. de Vos
出处
期刊:Journal of Breath Research [IOP Publishing]
卷期号:14 (3): 031001-031001 被引量:9
标识
DOI:10.1088/1752-7163/ab6f14
摘要

The aim of this proof of concept study is to investigate if an electronic nose (eNose) is able to make a distinction between breath profiles of diagnosed epilepsy patients and epilepsy-free control subjects. An eNose is a non-invasive device, with a working mechanism that is based on the presence of volatile organic compounds (VOCs) in exhaled breath. These VOCs interact with the sensors of the eNose, and the eNose has to be trained to distinguish between breath patterns from patients with a specific disease and control subjects without that disease. During the measurement participants were asked to breathe through the eNose for five minutes via a disposable mouthpiece. Seventy-four epilepsy patients and 110 control subjects were measured to train the eNose and create a classification model. To assess the effects of anti-epileptic drugs (AEDs) usage on the classification, additional test groups were measured: seven patients who (temporarily) did not use AEDs and 11 patients without epilepsy who used AEDs. The results show that an eNose is able to make a distinction between epilepsy and control subjects with a sensitivity of 76%, a specificity of 67%, and an accuracy of 71%. The results of the two additional groups of subjects show that the created model classifies one out of seven epilepsy patients without AEDs and six out of 13 patients without epilepsy but with AEDs correctly. In this proof of concept study, the AeonoseTM is able to differentiate between epilepsy patients and control subjects. However, the number of false positives and false negatives is still high, which suggests that this first model is still mainly based on the usage of various AEDs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
李善聪发布了新的文献求助10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
yue发布了新的文献求助30
1秒前
1秒前
2秒前
3秒前
QY11发布了新的文献求助10
6秒前
6秒前
random完成签到,获得积分10
8秒前
尛破孩完成签到,获得积分10
10秒前
树德发布了新的文献求助10
10秒前
科研通AI5应助gb采纳,获得10
10秒前
QY11完成签到,获得积分10
13秒前
16秒前
852应助欢喜南霜采纳,获得10
18秒前
研友_Z33EGZ发布了新的文献求助10
18秒前
19秒前
洋芋关注了科研通微信公众号
19秒前
哈哈是哈哈噜完成签到,获得积分20
20秒前
yue完成签到,获得积分10
20秒前
carrieschen发布了新的文献求助10
21秒前
科研路人锋完成签到 ,获得积分10
22秒前
科目三应助自信河马采纳,获得10
24秒前
25秒前
Xia发布了新的文献求助10
25秒前
26秒前
Drama应助糊涂的电脑采纳,获得10
27秒前
欢喜南霜发布了新的文献求助10
30秒前
李善聪发布了新的文献求助10
31秒前
科研通AI2S应助闪闪的以柳采纳,获得10
31秒前
冇_完成签到 ,获得积分10
39秒前
英俊的铭应助风趣丝采纳,获得10
39秒前
liuying2发布了新的文献求助10
41秒前
lu完成签到,获得积分20
42秒前
热心语柔完成签到 ,获得积分10
43秒前
43秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840592
求助须知:如何正确求助?哪些是违规求助? 3382626
关于积分的说明 10525423
捐赠科研通 3102331
什么是DOI,文献DOI怎么找? 1708767
邀请新用户注册赠送积分活动 822670
科研通“疑难数据库(出版商)”最低求助积分说明 773472