A Learning-Based Personalized Driver Model Using Bounded Generalized Gaussian Mixture Models

隐马尔可夫模型 混合模型 有界函数 计算机科学 高斯分布 高斯过程 机器学习 人工智能 数据建模 数学 数学分析 物理 量子力学 数据库
作者
Wenshuo Wang,Junqiang Xi,J. Karl Hedrick
出处
期刊:IEEE Transactions on Vehicular Technology [Institute of Electrical and Electronics Engineers]
卷期号:68 (12): 11679-11690 被引量:33
标识
DOI:10.1109/tvt.2019.2948911
摘要

Individual driver's driving behavior plays a pivotal role in personalized driver assistance systems. Gaussian mixture models (GMM) have been widely used to fit driving data, but unsuitable for capturing the data with a long-tailed distribution. Though the generalized GMM (GGMM) could overcome this fitting issue to some extent, it still cannot handle naturalistic data which is generally bounded. This paper presents a learning-based personalized driver model that can handle non-Gaussian and bounded naturalistic driving data. To this end, we develop a BGGMM-HMM framework to model driver behavior by integrating a hidden Markov model (HMM) in a bounded GGMM (BGGMM), which synthetically includes GMM and GGMM as special cases. Further, we design an associated iterative learning algorithm to estimate the model parameters. Naturalistic car-following driving data from eight drivers are used to demonstrate the effectiveness of BGGMM-HMM. Experimental results show that the personalized driver model of BGGMM-HMM that leverages the non-Gaussian and bounded support of driving data can improve model accuracy from 23~30% over traditional GMM-based models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
llll发布了新的文献求助10
刚刚
充电宝应助abc123采纳,获得10
刚刚
1秒前
干净的冷安应助nnn采纳,获得10
2秒前
咕咕完成签到,获得积分10
2秒前
BareBear应助是秋天采纳,获得10
3秒前
qingmoheng应助是秋天采纳,获得10
3秒前
充电宝应助陶醉的忆之采纳,获得10
4秒前
Gin_发布了新的文献求助10
5秒前
5秒前
5秒前
una完成签到,获得积分10
6秒前
7秒前
7秒前
我是老大应助滴滴答答采纳,获得10
8秒前
华仔应助Sunny采纳,获得30
9秒前
9秒前
10秒前
RCRCRC1995发布了新的文献求助10
10秒前
10秒前
10秒前
钢铁霞发布了新的文献求助10
10秒前
mimi发布了新的文献求助10
11秒前
充电宝应助ccc采纳,获得10
13秒前
小尾巴完成签到 ,获得积分10
13秒前
14秒前
Zilch发布了新的文献求助10
15秒前
随机昵称发布了新的文献求助10
15秒前
TT发布了新的文献求助10
16秒前
彭于彦祖应助加菲丰丰采纳,获得50
17秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
微光熠完成签到,获得积分10
18秒前
19秒前
归宁完成签到,获得积分10
19秒前
明亮玲发布了新的文献求助20
19秒前
20秒前
shea应助专注越彬采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5474151
求助须知:如何正确求助?哪些是违规求助? 4575997
关于积分的说明 14356041
捐赠科研通 4503822
什么是DOI,文献DOI怎么找? 2467785
邀请新用户注册赠送积分活动 1455585
关于科研通互助平台的介绍 1429599