亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Battery state-of-health modelling by multiple linear regression

线性回归 国家(计算机科学) 电池(电) 回归分析 线性模型 回归 真线性模型 统计 健康状况 计算机科学 环境科学 工程类 计量经济学 数学 贝叶斯多元线性回归 算法 热力学 功率(物理) 物理
作者
Søren Byg Vilsen,Daniel‐Ioan Stroe
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:290: 125700-125700 被引量:83
标识
DOI:10.1016/j.jclepro.2020.125700
摘要

Abstract The introduction of raw measurement data from field operated batteries when modelling battery state-of-health (SOH) has both advantages and disadvantages. An advantage being the reduction in the amount of expensive laboratory testing in the analysed application. A clear disadvantage is the increase in amount of data which needs to be processed and transmitted from the battery to a server. The work presented in this paper aims to reduce the amount of data which needs to be transmitted by the extraction of descriptive features of the voltage, and then reducing the number of features. The extracted features are reduced in two stages. The first stage uses principle components analysis (PCA) and a variation proportion, p, to limit the number of features used to those accounting p % of the variation. The state-of-health is not used in this process, i.e. it is a reduction based solely on the feature set. The second stage selects features from the PCA reduced feature set. In this stage two types of selection are employed and compared: (1) step-wise selection, and (2) L 1 -regularisation (also called the lasso method). These methods were used to model the relationship between the features and two SOH measures: capacity and internal resistance. The two selection methods were also compared to using all features in the PCA reduced feature set – creating a total of six models (three for both of SOH measures) for each of the PCA reduced features sets. The mean absolute percentage error (MAPE), calculated on the validation set, never exceeded 5 % for any of the three models, and at any of the PCA reduced feature sets; even when accounting for only 50% of the variation. Furthermore, if the PCA reduced feature set accounted for more than 50% of the variation, then the MAPE for the lasso method never exceeded 3 % , and achieved MAPE’s as low as 1.13% and 1.24%, when modelling the capacity and internal resistance, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助Viiigo采纳,获得10
2秒前
万邦德完成签到,获得积分10
9秒前
19秒前
归尘发布了新的文献求助10
24秒前
Jayzie完成签到 ,获得积分10
51秒前
GingerF应助淡然的妙芙采纳,获得50
1分钟前
1分钟前
1分钟前
卑微学术人完成签到 ,获得积分10
1分钟前
2分钟前
Viiigo发布了新的文献求助10
2分钟前
棠七应助倪妮采纳,获得10
2分钟前
苏梗完成签到 ,获得积分10
2分钟前
认真的幻姬完成签到,获得积分10
2分钟前
2分钟前
movoandy发布了新的文献求助30
2分钟前
2分钟前
科研通AI2S应助倪妮采纳,获得10
3分钟前
科研通AI2S应助倪妮采纳,获得10
3分钟前
赘婿应助倪妮采纳,获得10
3分钟前
wanci应助倪妮采纳,获得10
3分钟前
无花果应助Dralee采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
路卡利欧完成签到 ,获得积分10
3分钟前
光亮的垣完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
丘比特应助movoandy采纳,获得10
4分钟前
4分钟前
automan发布了新的文献求助10
4分钟前
roe完成签到 ,获得积分20
4分钟前
4分钟前
automan完成签到,获得积分10
4分钟前
胖小羊完成签到 ,获得积分10
4分钟前
4分钟前
忧郁小鸽子完成签到,获得积分10
4分钟前
小刘完成签到,获得积分10
4分钟前
4分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 2026 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5104996
求助须知:如何正确求助?哪些是违规求助? 4315064
关于积分的说明 13443981
捐赠科研通 4143505
什么是DOI,文献DOI怎么找? 2270465
邀请新用户注册赠送积分活动 1272960
关于科研通互助平台的介绍 1210012