Multivariate Data Analysis and Machine Learning for Prediction of MCI-to-AD Conversion

C4.5算法 支持向量机 人工智能 朴素贝叶斯分类器 多元统计 机器学习 痴呆 决策树 认知障碍 计算机科学 多元分析 医学 内科学 疾病
作者
Konstantina Skolariki,G Muniz Terrera,Samuel Danso
出处
期刊:Advances in Experimental Medicine and Biology [Springer Nature]
卷期号:: 81-103 被引量:6
标识
DOI:10.1007/978-3-030-32622-7_8
摘要

There has always been a need for discovering efficient and dependable Alzheimer’s disease (AD) diagnostic biomarkers. Like the majority of diseases, the earlier the diagnosis, the most effective the treatment. (Semi)-automated structural magnetic resonance imaging (MRI) processing approaches are very popular in AD research. Mild cognitive impairment (MCI) is considered to be a stage between normal cognitive ageing and dementia. MCI can often be the prodromal stage of AD. Around 10–15% of MCI patients convert to AD per year. In this study, we used three supervised machine learning (ML) techniques to differentiate MCI converters (MCIc) from MCI non-converters (MCInc) and predict their conversion rates from baseline MRI data (cortical thickness (CTH) and hippocampal volume (HCV)). A total of 803 participants from the ADNI cohort were included in this study (188 AD, 107 MCIc, 257 MCInc and 156 healthy controls (HC)). We studied the classification abilities of three different WEKA classifiers (support vector machine (SVM), decision trees (J48) and Naive Bayes (NB)). We built six different classification models, three models based on CTH and three based on HCV (CTH-SVM, CTH-J48, CTH-NB, HCV-SVM, HCV-J48 and HCV-NB). For the classification experiments, we obtained up to 71% sensitivity and up to 56% specificity. The prediction of conversion showed accuracy for up to 84%. The value of certain multivariate models derived from the classification experiments has exhibited robust and effective results in MCIc identification. However, there was a limitation in this study since we could not compare the CTH with the HCV models seeing as the data used originated from different subjects. As future direction, we propose the creation of a model that would combine various features with data originating from the same subjects, thus being a far more reliable and accurate prognostic tool.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一只小羊发布了新的文献求助10
1秒前
如风随水发布了新的文献求助10
1秒前
1秒前
bioglia完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
FOOL完成签到,获得积分10
2秒前
背后寒松完成签到 ,获得积分10
2秒前
诚心的秀完成签到,获得积分10
2秒前
3秒前
Lucas应助一粟采纳,获得10
4秒前
4秒前
Ranrunn发布了新的文献求助10
4秒前
Once完成签到,获得积分10
4秒前
4秒前
4秒前
du完成签到,获得积分10
5秒前
5秒前
台琳玉完成签到,获得积分10
5秒前
5秒前
galioo3000发布了新的文献求助10
6秒前
6秒前
手残症完成签到,获得积分10
6秒前
6秒前
温柔的迎荷完成签到,获得积分10
6秒前
GMR完成签到,获得积分10
7秒前
一只小羊完成签到,获得积分10
7秒前
8秒前
刻苦亦丝发布了新的文献求助20
8秒前
lecturer发布了新的文献求助10
9秒前
一汁蟹发布了新的文献求助10
9秒前
隐形傲霜完成签到 ,获得积分10
9秒前
10秒前
XXY发布了新的文献求助10
10秒前
kuyng完成签到,获得积分10
10秒前
King发布了新的文献求助10
10秒前
10秒前
ff完成签到,获得积分10
10秒前
台琳玉发布了新的文献求助10
11秒前
小小完成签到,获得积分10
11秒前
courage发布了新的文献求助10
11秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Applied Survey Data Analysis (第三版, 2025) 850
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Learning to Listen, Listening to Learn 570
The Psychology of Advertising (5th edition) 550
2023 ASHRAE Handbook HVAC Applications (SI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3872273
求助须知:如何正确求助?哪些是违规求助? 3414526
关于积分的说明 10689720
捐赠科研通 3138874
什么是DOI,文献DOI怎么找? 1731816
邀请新用户注册赠送积分活动 835004
科研通“疑难数据库(出版商)”最低求助积分说明 781624