亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identification of a blood-based 12-gene signature that predicts the severity of coronary artery stenosis: An integrative approach based on gene network construction, Support Vector Machine algorithm, and multi-cohort validation.

医学 支持向量机 内科学 计算机科学 冠状动脉疾病 模式识别(心理学) 基因 人工智能 机器学习 心脏病学
作者
Xue-bin Wang,Ning-hua Cui,Xia’nan Liu,Liang Ming
出处
期刊:Atherosclerosis [Elsevier BV]
卷期号:291: 34-43 被引量:5
标识
DOI:10.1016/j.atherosclerosis.2019.10.001
摘要

Abstract Background and aims We aimed to identify a blood-based gene expression score (GES) to predict the severity of coronary artery stenosis in patients with known or suspected coronary artery disease (CAD) by integrative use of gene network construction, Support Vector Machine (SVM) algorithm, and multi-cohort validation. Methods In the discovery phase, a public blood-based microarray dataset of 110 patients with known CAD was analyzed by weighted gene coexpression network analysis and protein-protein interaction network analysis to identify candidate hub genes. In the training set with 151 CAD patients, bioinformatically identified hub genes were experimentally verified by real-time polymerase chain reaction, and statistically filtered with the SVM algorithm to develop a GES. Internal and external validation of GES was performed in patients with suspected CAD from two validation cohorts (n = 209 and 206). Results The discovery phase screened 15 network-centric hub genes significantly correlated with the Duke CAD Severity Index. In the training cohort, 12 of 15 hub genes were filtered to construct a blood-based GES12, which showed good discrimination for higher modified Gensini scores (AUC: 0.798 and 0.812), higher Sullivan Extent scores (AUC: 0.776 and 0.778), and the presence of obstructive CAD (AUC: 0.834 and 0.792) in two validation cohorts. A nomogram comprising GES12, smoking status, hypertension status, low density lipoprotein cholesterol level, and body mass index further improved performance, with respect to discrimination, risk classification, and clinical utility, for prediction of coronary stenosis severity. Conclusions GES12 is useful in predicting the severity of coronary artery stenosis in patients with known or suspected CAD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
慕青应助Rita采纳,获得10
4秒前
6秒前
慢歌完成签到 ,获得积分10
7秒前
何拆发布了新的文献求助10
8秒前
fan完成签到,获得积分10
9秒前
咸金城发布了新的文献求助30
11秒前
fan发布了新的文献求助10
15秒前
21秒前
CipherSage应助一个zzq采纳,获得10
21秒前
小蘑菇应助咸金城采纳,获得30
30秒前
充电宝应助科研通管家采纳,获得10
30秒前
SciGPT应助科研通管家采纳,获得30
30秒前
31秒前
一个zzq发布了新的文献求助10
37秒前
38秒前
咸金城发布了新的文献求助30
43秒前
一个zzq完成签到,获得积分10
45秒前
54秒前
Hello应助永远采纳,获得10
58秒前
Rita发布了新的文献求助10
58秒前
1分钟前
Ava应助咸金城采纳,获得30
1分钟前
年轻书易发布了新的文献求助30
1分钟前
怕黑鲂完成签到 ,获得积分10
1分钟前
忐忑的雪糕完成签到 ,获得积分10
1分钟前
飞快的语蕊完成签到,获得积分10
1分钟前
1分钟前
咸金城发布了新的文献求助30
1分钟前
amengptsd完成签到,获得积分10
1分钟前
Toy完成签到,获得积分10
1分钟前
1分钟前
Toy发布了新的文献求助10
1分钟前
1分钟前
bloali完成签到,获得积分10
1分钟前
明理的延恶完成签到 ,获得积分10
1分钟前
瘦瘦乌龟完成签到 ,获得积分10
1分钟前
1619汤姆完成签到,获得积分10
1分钟前
科研通AI5应助咸金城采纳,获得30
1分钟前
2分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Genome Editing and Engineering: From TALENs, ZFNs and CRISPRs to Molecular Surgery 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
How to Price: A Guide to Pricing Techniques and Yield Management 200
Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833694
求助须知:如何正确求助?哪些是违规求助? 3376149
关于积分的说明 10492208
捐赠科研通 3095719
什么是DOI,文献DOI怎么找? 1704647
邀请新用户注册赠送积分活动 820063
科研通“疑难数据库(出版商)”最低求助积分说明 771792