已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Genomic Prediction for Grain Yield and Yield-Related Traits in Chinese Winter Wheat

插补(统计学) 缺少数据 全基因组关联研究 遗传力 统计 生物 次等位基因频率 预测建模 回归 单核苷酸多态性 遗传学 数学 基因型 基因
作者
Mohsin Ali,Zhang Yong,Awais Rasheed,Jiankang Wang,Luyan Zhang
出处
期刊:International Journal of Molecular Sciences [Multidisciplinary Digital Publishing Institute]
卷期号:21 (4): 1342-1342 被引量:38
标识
DOI:10.3390/ijms21041342
摘要

Genomic selection (GS) is a strategy to predict the genetic merits of individuals using genome-wide markers. However, GS prediction accuracy is affected by many factors, including missing rate and minor allele frequency (MAF) of genotypic data, GS models, trait features, etc. In this study, we used one wheat population to investigate prediction accuracies of various GS models on yield and yield-related traits from various quality control (QC) scenarios, missing genotype imputation, and genome-wide association studies (GWAS)-derived markers. Missing rate and MAF of single nucleotide polymorphism (SNP) markers were two major factors in QC. Five missing rate levels (0%, 20%, 40%, 60%, and 80%) and three MAF levels (0%, 5%, and 10%) were considered and the five-fold cross validation was used to estimate the prediction accuracy. The results indicated that a moderate missing rate level (20% to 40%) and MAF (5%) threshold provided better prediction accuracy. Under this QC scenario, prediction accuracies were further calculated for imputed and GWAS-derived markers. It was observed that the accuracies of the six traits were related to their heritability and genetic architecture, as well as the GS prediction model. Moore–Penrose generalized inverse (GenInv), ridge regression (RidgeReg), and random forest (RForest) resulted in higher prediction accuracies than other GS models across traits. Imputation of missing genotypic data had marginal effect on prediction accuracy, while GWAS-derived markers improved the prediction accuracy in most cases. These results demonstrate that QC on missing rate and MAF had positive impact on the predictability of GS models. We failed to identify one single combination of QC scenarios that could outperform the others for all traits and GS models. However, the balance between marker number and marker quality is important for the deployment of GS in wheat breeding. GWAS is able to select markers which are mostly related to traits, and therefore can be used to improve the prediction accuracy of GS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糖果完成签到 ,获得积分10
1秒前
就看最后一篇完成签到 ,获得积分10
1秒前
阮红亮完成签到,获得积分10
1秒前
壮观的谷冬完成签到 ,获得积分10
3秒前
斯文败类应助沉静白翠采纳,获得10
3秒前
在水一方应助Newky采纳,获得10
3秒前
禹卓完成签到,获得积分10
4秒前
岳小龙完成签到 ,获得积分10
9秒前
11秒前
脑洞疼应助一只羊采纳,获得10
14秒前
沉静白翠发布了新的文献求助10
17秒前
cis2014完成签到,获得积分10
17秒前
zpj完成签到 ,获得积分10
17秒前
礼岁岁完成签到 ,获得积分10
18秒前
Rita应助Caixtmx采纳,获得10
18秒前
wao完成签到 ,获得积分10
18秒前
19秒前
life的半边天完成签到 ,获得积分10
19秒前
20秒前
20秒前
上官完成签到 ,获得积分10
20秒前
xy完成签到 ,获得积分10
22秒前
22秒前
今我来思完成签到 ,获得积分10
22秒前
Fin2046发布了新的文献求助10
23秒前
喜悦夏青发布了新的文献求助10
24秒前
宣灵薇完成签到,获得积分0
27秒前
27秒前
surname发布了新的文献求助10
28秒前
28秒前
29秒前
聪慧不二完成签到 ,获得积分10
30秒前
小八路发布了新的文献求助10
30秒前
饺子完成签到,获得积分20
30秒前
32秒前
Lzoctor完成签到 ,获得积分10
33秒前
普里兹盐发布了新的文献求助30
33秒前
阳光下午茶完成签到 ,获得积分10
35秒前
小林同学0219完成签到 ,获得积分10
35秒前
糖醋里脊加醋完成签到 ,获得积分10
36秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795440
求助须知:如何正确求助?哪些是违规求助? 3340443
关于积分的说明 10300287
捐赠科研通 3057032
什么是DOI,文献DOI怎么找? 1677332
邀请新用户注册赠送积分活动 805385
科研通“疑难数据库(出版商)”最低求助积分说明 762491