RemeDB: Tool for Rapid Prediction of Enzymes Involved in Bioremediation from High-Throughput Metagenome Data Sets

基因组 生物修复 污染物 环境修复 生化工程 环境污染 污染 环境科学 生物 计算机科学 计算生物学 生态学 工程类 污染 遗传学 环境保护 基因
作者
Sai H. Sankara Subramanian,Karpaga Raja Sundari Balachandran,Vijaya Raghavan Rangamaran,Gopal Dharani
出处
期刊:Journal of Computational Biology [Mary Ann Liebert, Inc.]
卷期号:27 (7): 1020-1029 被引量:29
标识
DOI:10.1089/cmb.2019.0345
摘要

Environmental pollution has emerged to be a major hazard in today's world. Pollutants from varied sources cause harmful effects to the ecosystem. The major pollutants across marine and terrestrial regions are hydrocarbons, plastics, and dyes. Conventional methods for remediation have their own limitations and shortcomings to deal with these environmental pollutants. Bio-based remediation techniques using microbes have gained momentum in the recent past, primarily ascribed to their eco-friendly approach. The role of microbial enzymes in remediating the pollutants are well reported, and further exploration of microbial resources could lead to discovery of novel pollutant degrading enzymes (PDEs). Recent advances in next-generation sequencing technologies and metagenomics have provided the impetus to explore environmental microbes for potentially novel bioremediation enzymes. In this study, a tool, RemeDB, was developed for identifying bioremediation enzymes sequences from metagenomes. RemeDB aims at identifying hydrocarbon, dye, and plastic degrading enzymes from various metagenomic libraries. A sequence database consisting of >30,000 sequences proven to degrade the major pollutants was curated from various literature sources and this constituted the PDEs' database. Programs such as HMMER and RAPSearch were incorporated to scan across large metagenomic sequences libraries to identify PDEs. The tool was tested with metagenome data sets from varied sources and the outputs were validated. RemeDB was efficient to classify and identify the signature patterns of PDEs in the input data sets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲤鱼慕蕊发布了新的文献求助10
1秒前
神勇的半莲完成签到,获得积分10
2秒前
wake发布了新的文献求助10
2秒前
Lucas应助cometx采纳,获得10
3秒前
yyy发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
4秒前
6秒前
思源应助ddyytt采纳,获得10
6秒前
6秒前
顾矜应助bezoar采纳,获得30
7秒前
皮肤科应助扶手采纳,获得10
8秒前
panisa鹅完成签到 ,获得积分10
8秒前
疯狂的寻绿完成签到,获得积分10
10秒前
try发布了新的文献求助10
10秒前
10秒前
wake完成签到,获得积分20
11秒前
hb完成签到,获得积分10
11秒前
blueweier发布了新的文献求助10
11秒前
吉山芙发布了新的文献求助10
12秒前
领导范儿应助玩命的无血采纳,获得10
13秒前
科研发布了新的文献求助30
13秒前
情怀应助helen采纳,获得10
13秒前
科研通AI5应助zhq采纳,获得10
14秒前
123完成签到,获得积分10
15秒前
单纯灵松完成签到 ,获得积分10
15秒前
FashionBoy应助鲤鱼慕蕊采纳,获得10
15秒前
16秒前
16秒前
20秒前
20秒前
Keikei完成签到,获得积分10
21秒前
吉山芙完成签到,获得积分10
21秒前
21秒前
123发布了新的文献求助10
22秒前
cqnuly发布了新的文献求助30
22秒前
nancy93228完成签到 ,获得积分10
22秒前
22秒前
大可爱发布了新的文献求助30
22秒前
善学以致用应助仁爱水之采纳,获得10
23秒前
23秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Building Quantum Computers 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Encyclopedia of Mathematical Physics 2nd Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4240739
求助须知:如何正确求助?哪些是违规求助? 3774406
关于积分的说明 11853163
捐赠科研通 3429577
什么是DOI,文献DOI怎么找? 1882404
邀请新用户注册赠送积分活动 934325
科研通“疑难数据库(出版商)”最低求助积分说明 840937