Brain Functional Networks Based on Resting-State EEG Data for Major Depressive Disorder Analysis and Classification

脑电图 功能连接 静息状态功能磁共振成像 重性抑郁障碍 模式识别(心理学) 人工智能 神经科学 计算机科学 心理学 认知
作者
Bingtao Zhang,Guanghui Yan,Zhifei Yang,Yun Su,Jinfeng Wang,Tao Lei
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:29: 215-229 被引量:85
标识
DOI:10.1109/tnsre.2020.3043426
摘要

If the brain is regarded as a system, it will be one of the most complex systems in the universe. Traditional analysis and classification methods of major depressive disorder (MDD) based on electroencephalography (EEG) feature-levels often regard electrode as isolated node and ignore the correlation between them, so it's difficult to find alters of abnormal topological architecture in brain. To solve this problem, we propose a brain functional network framework for MDD of analysis and classification based on resting state EEG. The phase lag index (PLI) was calculated based on the 64-channel resting state EEG to construct the function connection matrix to reduce and avoid the volume conductor effect. Then binarization of brain function network based on small world index was realized. Statistical analyses were performed on different EEG frequency band and different brain regions. The results showed that significant alterations of brain synchronization occurred in frontal, temporal, parietal-occipital regions of left brain and temporal region of right brain. And average shortest path length and clustering coefficient in left central region of theta band and node betweenness centrality in right parietal-occipital region were significantly correlated with PHQ-9 score of MDD, which indicates these three network metrics may be served as potential biomarkers to effectively distinguish MDD from controls and the highest classification accuracy can reach 93.31%. Our findings also point out that the brain function network of MDD patients shows a random trend, and small world characteristics appears to weaken.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助小化化爱学习采纳,获得10
刚刚
冰魂应助hhhhz采纳,获得20
1秒前
香蕉觅云应助TK采纳,获得10
2秒前
bkagyin应助高兴问凝采纳,获得10
2秒前
情怀应助大魁采纳,获得10
4秒前
虚幻小丸子完成签到 ,获得积分10
5秒前
生化危机始作俑者完成签到,获得积分10
7秒前
Owen应助谢富杰采纳,获得10
7秒前
8秒前
snoke发布了新的文献求助10
9秒前
66完成签到,获得积分10
9秒前
鲁滨逊完成签到 ,获得积分10
9秒前
少十七完成签到,获得积分10
10秒前
10秒前
11秒前
Mao完成签到 ,获得积分10
11秒前
tata0215完成签到 ,获得积分10
12秒前
高兴问凝完成签到,获得积分20
13秒前
高兴问凝发布了新的文献求助10
16秒前
16秒前
往前走别回头完成签到,获得积分10
17秒前
man完成签到 ,获得积分10
18秒前
东东完成签到,获得积分10
18秒前
66发布了新的文献求助10
18秒前
一点完成签到,获得积分10
19秒前
科研小白完成签到,获得积分10
20秒前
xmy完成签到,获得积分10
20秒前
21秒前
tcf完成签到,获得积分10
24秒前
大力便当发布了新的文献求助10
28秒前
28秒前
不戴眼镜的眼镜王蛇完成签到,获得积分10
29秒前
项目完成签到,获得积分20
29秒前
30秒前
lht完成签到 ,获得积分10
32秒前
项目发布了新的文献求助10
34秒前
大力便当完成签到,获得积分10
35秒前
yiryir完成签到 ,获得积分10
36秒前
科研通AI5应助yumiao采纳,获得10
40秒前
清秀的不言完成签到 ,获得积分10
41秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777834
求助须知:如何正确求助?哪些是违规求助? 3323349
关于积分的说明 10213997
捐赠科研通 3038590
什么是DOI,文献DOI怎么找? 1667553
邀请新用户注册赠送积分活动 798161
科研通“疑难数据库(出版商)”最低求助积分说明 758290