Automatic detection of various abnormalities in capsule endoscopy videos by a deep learning-based system: a multicenter study

医学 胶囊内镜 卷积神经网络 人工智能 核医学 模式识别(心理学) 内科学 计算机科学
作者
Tomonori Aoki,Atsuo Yamada,Yusuke Kato,Hiroaki Saito,Akiyoshi Tsuboi,Ayako Nakada,Ryota Niikura,Mitsuhiro Fujishiro,Shiro Oka,Soichiro Ishihara,Tomoki Matsuda,Masato Nakahori,Shinji Tanaka,Kazuhiko Koike,Tomohiro Tada
出处
期刊:Gastrointestinal Endoscopy [Elsevier BV]
卷期号:93 (1): 165-173.e1 被引量:48
标识
DOI:10.1016/j.gie.2020.04.080
摘要

Background and Aims

A deep convolutional neural network (CNN) system could be a high-level screening tool for capsule endoscopy (CE) reading but has not been established for targeting various abnormalities. We aimed to develop a CNN-based system and compare it with the existing QuickView mode in terms of their ability to detect various abnormalities.

Methods

We trained a CNN system using 66,028 CE images (44,684 images of abnormalities and 21,344 normal images). The detection rate of the CNN for various abnormalities was assessed per patient, using an independent test set of 379 consecutive small-bowel CE videos from 3 institutions. Mucosal breaks, angioectasia, protruding lesions, and blood content were present in 94, 29, 81, and 23 patients, respectively. The detection capability of the CNN was compared with that of QuickView mode.

Results

The CNN picked up 1,135,104 images (22.5%) from the 5,050,226 test images, and thus, the sampling rate of QuickView mode was set to 23% in this study. In total, the detection rate of the CNN for abnormalities per patient was significantly higher than that of QuickView mode (99% vs 89%, P < .001). The detection rates of the CNN for mucosal breaks, angioectasia, protruding lesions, and blood content were 100% (94 of 94), 97% (28 of 29), 99% (80 of 81), and 100% (23 of 23), respectively, and those of QuickView mode were 91%, 97%, 80%, and 96%, respectively.

Conclusions

We developed and tested a CNN-based detection system for various abnormalities using multicenter CE videos. This system could serve as an alternative high-level screening tool to QuickView mode.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助zmy采纳,获得10
刚刚
笨笨的荧荧完成签到 ,获得积分10
刚刚
1秒前
1秒前
wenwen完成签到,获得积分10
2秒前
上官若男应助苦无采纳,获得10
4秒前
否极泰来完成签到 ,获得积分10
4秒前
背后中心发布了新的文献求助10
4秒前
5秒前
贪玩的网络完成签到 ,获得积分20
7秒前
7秒前
从容的谷云发布了新的文献求助200
7秒前
健忘捕发布了新的文献求助10
8秒前
内向绿竹应助zhiwei采纳,获得30
8秒前
8秒前
9秒前
烟花应助探讨采纳,获得10
9秒前
小熊66618发布了新的文献求助10
11秒前
12秒前
背后中心完成签到,获得积分10
12秒前
12秒前
13秒前
登山人发布了新的文献求助10
14秒前
两是ssyycc发布了新的文献求助10
16秒前
afrex发布了新的文献求助30
18秒前
天天开心完成签到 ,获得积分10
18秒前
彭于晏应助轩子墨采纳,获得10
19秒前
gloval完成签到,获得积分10
20秒前
科研通AI5应助小旺仔采纳,获得10
21秒前
耗子侠完成签到,获得积分10
23秒前
倒立才能看文献完成签到,获得积分10
23秒前
24秒前
24秒前
你好这位仁兄完成签到,获得积分10
26秒前
Tiwiiw完成签到 ,获得积分10
27秒前
27秒前
30秒前
30秒前
登山人发布了新的文献求助10
31秒前
33秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789499
求助须知:如何正确求助?哪些是违规求助? 3334519
关于积分的说明 10270310
捐赠科研通 3050937
什么是DOI,文献DOI怎么找? 1674263
邀请新用户注册赠送积分活动 802535
科研通“疑难数据库(出版商)”最低求助积分说明 760742