Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching

方向(向量空间) 人工智能 计算机科学 计算机视觉 展开图 方位角 匹配(统计) 精确性和召回率 判别式 相似性(几何) 模式识别(心理学) 特征(语言学) 职位(财务) 数学 图像(数学) 几何学 统计 经济 哲学 语言学 财务
作者
Yujiao Shi,Xin Yu,Dylan Campbell,Hongdong Li
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2005.03860
摘要

Cross-view geo-localization is the problem of estimating the position and orientation (latitude, longitude and azimuth angle) of a camera at ground level given a large-scale database of geo-tagged aerial (e.g., satellite) images. Existing approaches treat the task as a pure location estimation problem by learning discriminative feature descriptors, but neglect orientation alignment. It is well-recognized that knowing the orientation between ground and aerial images can significantly reduce matching ambiguity between these two views, especially when the ground-level images have a limited Field of View (FoV) instead of a full field-of-view panorama. Therefore, we design a Dynamic Similarity Matching network to estimate cross-view orientation alignment during localization. In particular, we address the cross-view domain gap by applying a polar transform to the aerial images to approximately align the images up to an unknown azimuth angle. Then, a two-stream convolutional network is used to learn deep features from the ground and polar-transformed aerial images. Finally, we obtain the orientation by computing the correlation between cross-view features, which also provides a more accurate measure of feature similarity, improving location recall. Experiments on standard datasets demonstrate that our method significantly improves state-of-the-art performance. Remarkably, we improve the top-1 location recall rate on the CVUSA dataset by a factor of 1.5x for panoramas with known orientation, by a factor of 3.3x for panoramas with unknown orientation, and by a factor of 6x for 180-degree FoV images with unknown orientation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小雨堂完成签到 ,获得积分10
6秒前
苦逼的科研汪完成签到 ,获得积分10
10秒前
10秒前
Hysen_L完成签到 ,获得积分10
13秒前
完美世界应助科研通管家采纳,获得10
14秒前
JiegeSCI完成签到,获得积分10
14秒前
852应助科研通管家采纳,获得10
14秒前
NexusExplorer应助科研通管家采纳,获得10
14秒前
14秒前
小二郎应助科研通管家采纳,获得10
14秒前
所所应助科研通管家采纳,获得10
14秒前
Lucas应助科研通管家采纳,获得10
14秒前
传奇3应助科研通管家采纳,获得10
14秒前
14秒前
赘婿应助科研通管家采纳,获得30
15秒前
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
orixero应助科研通管家采纳,获得10
15秒前
彭于彦祖应助科研通管家采纳,获得20
15秒前
赘婿应助科研通管家采纳,获得30
15秒前
斯文败类应助科研通管家采纳,获得10
15秒前
HalfGumps完成签到,获得积分10
16秒前
追光发布了新的文献求助10
18秒前
21秒前
动漫大师发布了新的文献求助10
26秒前
27秒前
厉不厉害你坤哥完成签到,获得积分10
29秒前
xk要发nature子刊完成签到,获得积分10
30秒前
32秒前
动漫大师发布了新的文献求助10
32秒前
十二完成签到 ,获得积分10
34秒前
球球发布了新的文献求助10
35秒前
35秒前
机智的觅风完成签到,获得积分10
35秒前
FashionBoy应助追光采纳,获得10
40秒前
嗳7完成签到 ,获得积分10
45秒前
45秒前
球球完成签到,获得积分10
48秒前
学不死就往死里学完成签到,获得积分10
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776521
求助须知:如何正确求助?哪些是违规求助? 3322019
关于积分的说明 10208579
捐赠科研通 3037315
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797596
科研通“疑难数据库(出版商)”最低求助积分说明 757878