已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

DeepSurv: Personalized Treatment Recommender System Using A Cox Proportional Hazards Deep Neural Network

协同过滤 深度学习 循环神经网络
作者
Jared Katzman,Uri Shaham,Jonathan Bates,Alexander Cloninger,Tingting Jiang,Yuval Kluger
出处
期刊:arXiv: Machine Learning 被引量:225
标识
DOI:10.1186/s12874-018-0482-1
摘要

Medical practitioners use survival models to explore and understand the relationships between patients' covariates (e.g. clinical and genetic features) and the effectiveness of various treatment options. Standard survival models like the linear Cox proportional hazards model require extensive feature engineering or prior medical knowledge to model treatment interaction at an individual level. While nonlinear survival methods, such as neural networks and survival forests, can inherently model these high-level interaction terms, they have yet to be shown as effective treatment recommender systems. We introduce DeepSurv, a Cox proportional hazards deep neural network and state-of-the-art survival method for modeling interactions between a patient's covariates and treatment effectiveness in order to provide personalized treatment recommendations. We perform a number of experiments training DeepSurv on simulated and real survival data. We demonstrate that DeepSurv performs as well as or better than other state-of-the-art survival models and validate that DeepSurv successfully models increasingly complex relationships between a patient's covariates and their risk of failure. We then show how DeepSurv models the relationship between a patient's features and effectiveness of different treatment options to show how DeepSurv can be used to provide individual treatment recommendations. Finally, we train DeepSurv on real clinical studies to demonstrate how it's personalized treatment recommendations would increase the survival time of a set of patients. The predictive and modeling capabilities of DeepSurv will enable medical researchers to use deep neural networks as a tool in their exploration, understanding, and prediction of the effects of a patient's characteristics on their risk of failure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
追寻听南完成签到 ,获得积分10
2秒前
ada发布了新的文献求助10
3秒前
科研通AI5应助傢誠采纳,获得10
3秒前
谨慎青亦完成签到 ,获得积分10
8秒前
天大青年完成签到,获得积分20
9秒前
9秒前
帮我带个饭完成签到 ,获得积分10
10秒前
CipherSage应助vitals采纳,获得10
10秒前
温暖的荷花关注了科研通微信公众号
13秒前
傢誠发布了新的文献求助10
13秒前
李剑鸿驳回了zxh应助
14秒前
15秒前
黎明完成签到,获得积分10
15秒前
马华化完成签到,获得积分0
17秒前
19秒前
zjkzh完成签到 ,获得积分10
23秒前
vitals完成签到,获得积分10
24秒前
小小莫完成签到 ,获得积分10
25秒前
恩雁发布了新的文献求助10
25秒前
26秒前
傢誠发布了新的文献求助10
26秒前
ada完成签到,获得积分20
28秒前
vitals发布了新的文献求助10
30秒前
Leo完成签到,获得积分10
31秒前
xiaoyeken完成签到,获得积分20
33秒前
汉堡包应助yuebaoji采纳,获得10
35秒前
勤奋凡之完成签到,获得积分10
37秒前
39秒前
踏实嚣发布了新的文献求助20
42秒前
43秒前
yuebaoji完成签到,获得积分10
43秒前
Petrichor完成签到,获得积分10
43秒前
欣喜眼神完成签到 ,获得积分10
44秒前
45秒前
45秒前
星辰大海应助HJJHJH采纳,获得10
46秒前
zumii发布了新的文献求助10
47秒前
大模型应助風谷采纳,获得10
48秒前
集典完成签到 ,获得积分10
48秒前
yuebaoji发布了新的文献求助10
49秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
Effects of Receptive Music Therapy Combined with Virtual Reality on Prevalent Symptoms in Patients with Advanced Cancer 282
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811450
求助须知:如何正确求助?哪些是违规求助? 3355735
关于积分的说明 10377583
捐赠科研通 3072591
什么是DOI,文献DOI怎么找? 1687672
邀请新用户注册赠送积分活动 811726
科研通“疑难数据库(出版商)”最低求助积分说明 766795