Raman Spectroscopy of Graphene

化学 拉曼光谱 石墨烯 纳米技术 核磁共振 光学 物理 材料科学
作者
Juanxiaa Wu,Hua Xu,Jin Zhang
出处
期刊:Acta Chimica Sinica [Shaghai Institute of Organic Chemistry]
卷期号:72 (3): 301-301 被引量:103
标识
DOI:10.6023/a13090936
摘要

Graphene, a monolayer of carbon atoms packed into a two-dimensional crystal structure, attracted intense attention owing to its unique structure and optical, electronic properties.Raman spectroscopy is a quick and precise method in material science and has been employed for many years to investigate material properties.It can be used to investigate the electronic band structure, the phonon energy dispersion and the electron-phonon interaction in graphene systems.In probing graphene's properties, Raman spectroscopy is considered to be a reliable method.In this review, we highlight recent progress of studying graphene structure using Raman spectroscopy.First, on the basis of systematically analyzing the phonon dispersion of graphene, the typical Raman scattering features of graphene, such as G band, G' band, and D band, and the basic physical process are introduced.Using these Raman fingerprints, we can quickly and directly distinguish the layer thickness of graphene, determine the edge chirality and monitor the type and density of defects in graphene.Second, stacking disorder will significantly modify the optical properties and interlayer coupling stretch of few-layer graphene so that the Raman features of graphene will be strongly influenced not only in the G band intensity but also in the intensity, lineshape and the frequency of G' band.According to the peak position, width, and intensity of the Raman G band and G' band in graphene, we also discuss the influence of doping, substrate, temperature, and strain on the electronic structure of graphene.Finally, we introduce the second order overtone and combination Raman modes and the low frequency Raman feature (shear and layer breathing mode) in graphene, and discuss the dependence of these peaks on the structure of graphene.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lc339发布了新的文献求助10
1秒前
pluto应助小离采纳,获得10
1秒前
热情的凝云完成签到,获得积分10
2秒前
Jasper应助懒羊羊采纳,获得10
2秒前
搜集达人应助李星星采纳,获得10
2秒前
zhou发布了新的文献求助10
2秒前
阳仔完成签到,获得积分10
2秒前
罗备完成签到,获得积分10
2秒前
3秒前
初心路发布了新的文献求助10
3秒前
务实大神完成签到,获得积分10
3秒前
zsh完成签到,获得积分10
4秒前
4秒前
陶醉千愁完成签到,获得积分20
5秒前
超帅忆南完成签到 ,获得积分10
5秒前
所所应助溺水的鸭子采纳,获得10
5秒前
Alan完成签到,获得积分10
6秒前
研友_Zl1w68发布了新的文献求助10
7秒前
糟糕的半鬼完成签到,获得积分10
8秒前
game完成签到,获得积分10
8秒前
Kiwi完成签到 ,获得积分10
8秒前
Lo完成签到,获得积分10
9秒前
9秒前
周海涛完成签到,获得积分20
9秒前
高兴的灵雁完成签到 ,获得积分10
9秒前
ou应助自觉的白易采纳,获得20
9秒前
zsh发布了新的文献求助10
10秒前
孤心匠完成签到,获得积分10
10秒前
Htt完成签到 ,获得积分10
10秒前
多看书少看剧完成签到 ,获得积分10
10秒前
duomiaicha完成签到,获得积分10
10秒前
懵懂的小夏完成签到 ,获得积分10
10秒前
赘婿应助windli采纳,获得10
10秒前
ziyi发布了新的文献求助30
11秒前
Dobronx03发布了新的文献求助10
12秒前
曾嘉欣发布了新的文献求助10
12秒前
降解百分百完成签到,获得积分10
12秒前
慕青应助Zevin采纳,获得10
12秒前
zh完成签到,获得积分10
13秒前
14秒前
高分求助中
The three stars each : the Astrolabes and related texts 1070
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Boris Pesce - Gli impiegati della Fiat dal 1955 al 1999 un percorso nella memoria 500
[Lambert-Eaton syndrome without calcium channel autoantibodies] 500
少脉山油柑叶的化学成分研究 500
Recherches Ethnographiques sue les Yao dans la Chine du Sud 500
Aspect and Predication: The Semantics of Argument Structure 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2401842
求助须知:如何正确求助?哪些是违规求助? 2101283
关于积分的说明 5298710
捐赠科研通 1828869
什么是DOI,文献DOI怎么找? 911607
版权声明 560339
科研通“疑难数据库(出版商)”最低求助积分说明 487302