Fragment‐based deep molecular generation using hierarchical chemical graph representation and multi‐resolution graph variational autoencoder

片段(逻辑) 自编码 图形 计算机科学 代表(政治) 分辨率(逻辑) 模式识别(心理学) 理论计算机科学 算法 人工智能 深度学习 政治 政治学 法学
作者
Zhenxiang Gao,Xinyu Wang,Blake Blumenfeld Gaines,Xuetao Shi,Jinbo Bi,Minghu Song
出处
期刊:Molecular Informatics [Wiley]
卷期号:42 (5) 被引量:7
标识
DOI:10.1002/minf.202200215
摘要

Abstract Graph generative models have recently emerged as an interesting approach to construct molecular structures atom‐by‐atom or fragment‐by‐fragment. In this study, we adopt the fragment‐based strategy and decompose each input molecule into a set of small chemical fragments. In drug discovery, a few drug molecules are designed by replacing certain chemical substituents with their bioisosteres or alternative chemical moieties. This inspires us to group decomposed fragments into different fragment clusters according to their local structural environment around bond‐breaking positions. In this way, an input structure can be transformed into an equivalent three‐layer graph, in which individual atoms, decomposed fragments, or obtained fragment clusters act as graph nodes at each corresponding layer. We further implement a prototype model, named multi‐resolution graph variational autoencoder (MRGVAE), to learn embeddings of constituted nodes at each layer in a fine‐to‐coarse order. Our decoder adopts a similar but conversely hierarchical structure. It first predicts the next possible fragment cluster, then samples an exact fragment structure out of the determined fragment cluster, and sequentially attaches it to the preceding chemical moiety. Our proposed approach demonstrates comparatively good performance in molecular evaluation metrics compared with several other graph‐based molecular generative models. The introduction of the additional fragment cluster graph layer will hopefully increase the odds of assembling new chemical moieties absent in the original training set and enhance their structural diversity. We hope that our prototyping work will inspire more creative research to explore the possibility of incorporating different kinds of chemical domain knowledge into a similar multi‐resolution neural network architecture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
脑洞疼应助大大小采纳,获得20
2秒前
2秒前
内向映天发布了新的文献求助10
3秒前
幻梦如歌完成签到,获得积分10
3秒前
离枝完成签到,获得积分10
4秒前
一一发布了新的文献求助10
7秒前
奔铂儿钯发布了新的文献求助20
8秒前
9秒前
10秒前
壮观的凝阳完成签到,获得积分10
10秒前
10秒前
11秒前
12秒前
似我发布了新的文献求助10
13秒前
13秒前
猪皮恶人发布了新的文献求助10
14秒前
谷遇完成签到,获得积分10
14秒前
糖优优完成签到,获得积分10
15秒前
111发布了新的文献求助10
17秒前
略略略完成签到,获得积分10
18秒前
迷路的芝麻完成签到 ,获得积分10
19秒前
一一完成签到 ,获得积分10
19秒前
昵称发布了新的文献求助10
21秒前
深情安青应助河堤采纳,获得10
22秒前
梁小氓完成签到 ,获得积分10
22秒前
23秒前
27秒前
思源应助应应采纳,获得10
27秒前
波尔完成签到,获得积分20
29秒前
HHH发布了新的文献求助10
29秒前
默默的无敌完成签到,获得积分10
31秒前
猪皮恶人发布了新的文献求助10
32秒前
33秒前
科研小白完成签到,获得积分10
36秒前
河堤发布了新的文献求助10
37秒前
38秒前
39秒前
高兴孤萍发布了新的文献求助10
45秒前
Shuai完成签到,获得积分10
49秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783306
求助须知:如何正确求助?哪些是违规求助? 3328583
关于积分的说明 10237312
捐赠科研通 3043737
什么是DOI,文献DOI怎么找? 1670627
邀请新用户注册赠送积分活动 799811
科研通“疑难数据库(出版商)”最低求助积分说明 759130