Open access dataset, code library and benchmarking deep learning approaches for state-of-health estimation of lithium-ion batteries

标杆管理 计算机科学 可解释性 源代码 水准点(测量) 预处理器 规范化(社会学) 深度学习 机器学习 人工智能 数据预处理 数据挖掘 业务 社会学 营销 大地测量学 地理 操作系统 人类学
作者
Fujin Wang,Zhi Zhai,Bingchen Liu,Shiyu Zheng,Zhibin Zhao,Xuefeng Chen
出处
期刊:Journal of energy storage [Elsevier BV]
卷期号:77: 109884-109884 被引量:28
标识
DOI:10.1016/j.est.2023.109884
摘要

Great progress has been made in deep learning (DL) based state-of-health (SOH) estimation of lithium-ion batteries, which helps to provide recommendations for predictive maintenance and replacement of lithium-ion batteries. However, despite the abundance of articles, few open-source codes are publicly available. While there are several public datasets, they tend to be more oriented toward simulating laboratory environments rather than real-world usage scenarios. Moreover, they solely provide raw data without any corresponding preprocessing codes, resulting in inconsistencies in preprocessing methods across different papers. These reasons lead to unfair comparisons and ineffective improvements. In response to these problems, this paper publishes a large-scale lithium-ion battery run-to-failure dataset, consisting of 55 batteries, and provides a unified data preprocessing method. Besides, we comprehensively evaluate 5 well-known DL-based models to provide benchmark research. To be specific, first, the existing DL-based SOH estimation methods are reviewed in detail. Second, we provide a comprehensive evaluation of DL-based models on 2 large-scale datasets, including 100 batteries, with 3 input types and 3 normalization methods. Third, we make the complete evaluation codes and dataset publicly available for better comparison and model improvement. Fourth, we discuss future DL-based SOH estimation, including unsupervised learning, transfer learning, interpretability, and physics-informed machine learning. We emphasize the importance of open-source code, provide baseline estimation errors (error upper bounds), and discuss existing issues in this field. The code library is available at: https://github.com/wang-fujin/SOHbenchmark.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘚儿塔发布了新的文献求助10
3秒前
搜集达人应助风笛采纳,获得10
3秒前
3秒前
4秒前
白凌珍完成签到,获得积分10
4秒前
duanxiaoyu发布了新的文献求助10
4秒前
隐形曼青应助万有引力采纳,获得10
7秒前
dup完成签到,获得积分10
7秒前
紧张的芷发布了新的文献求助10
8秒前
8秒前
JamesPei应助dayuernihao采纳,获得10
8秒前
Ava应助一路生花采纳,获得10
8秒前
9秒前
9秒前
10秒前
烟花应助浮爔采纳,获得10
15秒前
15秒前
伏月八完成签到,获得积分10
15秒前
龙阔发布了新的文献求助10
15秒前
Rowena完成签到,获得积分10
16秒前
风笛发布了新的文献求助10
16秒前
16秒前
17秒前
不想干活应助刘荣圣采纳,获得10
17秒前
18秒前
萧衍完成签到 ,获得积分10
18秒前
知行者发布了新的文献求助10
18秒前
迷人秋烟发布了新的文献求助1000
19秒前
19秒前
orixero应助lugo采纳,获得10
19秒前
lili完成签到,获得积分10
20秒前
adazbq发布了新的文献求助10
20秒前
万有引力发布了新的文献求助10
21秒前
一路生花发布了新的文献求助10
21秒前
Rowena发布了新的文献求助10
22秒前
我爱四大力学完成签到,获得积分10
22秒前
H华ua应助qiuling采纳,获得30
22秒前
wanci应助Xiaopan采纳,获得10
23秒前
萧衍关注了科研通微信公众号
23秒前
yousheng完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4525032
求助须知:如何正确求助?哪些是违规求助? 3965530
关于积分的说明 12290302
捐赠科研通 3629806
什么是DOI,文献DOI怎么找? 1997513
邀请新用户注册赠送积分活动 1033970
科研通“疑难数据库(出版商)”最低求助积分说明 923590