Prediction of acute methanol poisoning prognosis using machine learning techniques

甲醇中毒 机器学习 人工智能 医学 梯度升压 随机森林 计算机科学 甲醇 化学 有机化学
作者
Mitra Rahimi,Sayed Masoud Hosseini,Seyed Ali Mohtarami,Babak Mostafazadeh,Peyman Erfan Talab Evini,Mobin Fathy,Arya Kazemi,Sina Khani,Seyed Mohammad Javad Mortazavi,Amirali Soheili,Seyed Mohammad Vahabi,Shahin Shadnia
出处
期刊:Toxicology [Elsevier BV]
卷期号:504: 153770-153770 被引量:2
标识
DOI:10.1016/j.tox.2024.153770
摘要

Methanol poisoning is a global public health concern, especially prevalent in developing nations. This study focuses on predicting the severity of methanol intoxication using machine learning techniques, aiming to improve early identification and prognosis assessment. The study, conducted at Loghman Hakim Hospital in Tehran, Iran. The data pertaining to individuals afflicted with methanol poisoning was retrieved retrospectively and divided into training and test groups at a ratio of 70:30. The selected features were then inputted into various machine learning methods. The models were implemented using the Scikit-learn library in the Python programming language. Ultimately, the efficacy of the developed models was assessed through ten-fold cross-validation techniques and specific evaluation criteria, with a confidence level of 95%. A total number of 897 patients were included and divided in three groups including without sequel (n = 573), with sequel (n = 234), and patients who died (n = 90). The two-step feature selection was yielded 43 features in first step and 23 features in second step. In best model (Gradient Boosting Classifier) test dataset metric by 32 features younger age, higher methanol ingestion, respiratory symptoms, lower GCS scores, type of visual symptom, duration of therapeutic intervention, ICU admission, and elevated CPK levels were among the most important features predicting the prognosis of methanol poisoning. The Gradient Boosting Classifier demonstrated the highest predictive capability, achieving AUC values of 0.947 and 0.943 in the test dataset with 43 and 23 features, respectively. This research introduces a machine learning-driven prognostic model for methanol poisoning, demonstrating superior predictive capabilities compared to traditional statistical methods. The identified features provide valuable insights for early intervention and personalized treatment strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助安静的瑾瑜采纳,获得10
刚刚
ddddd发布了新的文献求助10
1秒前
1秒前
严珍珍完成签到 ,获得积分10
2秒前
萧萧发布了新的文献求助10
4秒前
5秒前
5秒前
润run完成签到,获得积分10
6秒前
淡定可乐完成签到,获得积分10
6秒前
学术小白完成签到 ,获得积分10
8秒前
ddddd完成签到 ,获得积分10
9秒前
景风完成签到,获得积分10
9秒前
文G完成签到,获得积分10
10秒前
10秒前
xuhaoo0125发布了新的文献求助20
10秒前
景风发布了新的文献求助10
11秒前
快乐滑板发布了新的文献求助10
11秒前
kyJYbs发布了新的文献求助10
12秒前
龙龙ff11_完成签到,获得积分10
13秒前
16秒前
16秒前
萧萧完成签到,获得积分10
19秒前
张茜发布了新的文献求助10
21秒前
烟花应助yuyu采纳,获得30
22秒前
ddddd关注了科研通微信公众号
22秒前
科研通AI5应助白青采纳,获得10
24秒前
27秒前
Akim应助houcheng采纳,获得30
28秒前
隐形曼青应助单纯靖易采纳,获得10
28秒前
30秒前
无花果应助科研通管家采纳,获得10
30秒前
大个应助科研通管家采纳,获得10
30秒前
科研通AI5应助科研通管家采纳,获得10
30秒前
CodeCraft应助科研通管家采纳,获得30
30秒前
打打应助科研通管家采纳,获得10
30秒前
乐乐应助科研通管家采纳,获得10
30秒前
NexusExplorer应助科研通管家采纳,获得10
31秒前
赘婿应助科研通管家采纳,获得10
31秒前
WeiX__Chen完成签到 ,获得积分10
31秒前
32秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Pteromalidae 600
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842721
求助须知:如何正确求助?哪些是违规求助? 3384746
关于积分的说明 10536991
捐赠科研通 3105270
什么是DOI,文献DOI怎么找? 1710203
邀请新用户注册赠送积分活动 823501
科研通“疑难数据库(出版商)”最低求助积分说明 774137