Study of High-Energy Proton Irradiation Effects in Top-Gate Graphene Field-Effect Transistors

材料科学 石墨烯 辐照 质子 栅氧化层 通量 光电子学 场效应晶体管 电子迁移率 阈值电压 晶体管 原子物理学 电压 纳米技术 电气工程 物理 核物理学 工程类
作者
Xiaolan Lu,Hongxia Guo,Zhifeng Lei,Chao Peng,Zhangang Zhang,Hong Zhang,Teng Ma,Yahui Feng,Wuying Ma,Xiangli Zhong,Jifang Li,Yangfan Li,Ruxue Bai
出处
期刊:Electronics [MDPI AG]
卷期号:12 (23): 4837-4837
标识
DOI:10.3390/electronics12234837
摘要

In this article, the effects of high-energy proton irradiation on top-gate graphene field-effect transistors (GFETs) were investigated by using 20 MeV protons. The basic electrical parameters of the top-gate GFETs were measured before and after proton irradiation with a fluence of 1 × 1011 p/cm2 and 5 × 1011 p/cm2, respectively. Decreased saturation current, increased Dirac sheet resistance, and negative drift in the Dirac voltage in response to proton irradiation were observed. According to the transfer characteristic curves, it was found that the carrier mobility was reduced after proton irradiation. The analysis suggests that proton irradiation generates a large net positive charge in the gate oxide layer, which induces a negative drift in the Dirac voltage. Introducing defects and increased impurities at the gate oxide/graphene interface after proton irradiation resulted in enhanced Coulomb scattering and reduced mobility of the carriers, which in turn affects the Dirac sheet resistance and saturation current. After annealing at room temperature, the electrical characteristics of the devices were partially restored. The results of the technical computer-aided design (TCAD) simulation indicate that the reduction in carrier mobility is the main reason for the degradation of the electrical performance of the device. Monte Carlo simulations were conducted to determine the ionization and nonionization energy losses induced by proton incidence in top-gate GFET devices. The simulation data show that the ionization energy loss is the primary cause of the degradation of the electrical performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
dqh发布了新的文献求助10
2秒前
3秒前
5秒前
潘健康发布了新的文献求助10
6秒前
7秒前
7秒前
所所应助dqh采纳,获得10
8秒前
小二郎应助科研通管家采纳,获得10
9秒前
小蘑菇应助科研通管家采纳,获得10
9秒前
钵钵鸡应助科研通管家采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
wanci应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
慕青应助科研通管家采纳,获得10
9秒前
酷波er应助科研通管家采纳,获得10
10秒前
10秒前
秋雪瑶应助科研通管家采纳,获得10
10秒前
CY发布了新的文献求助10
10秒前
11秒前
呵呵呵发布了新的文献求助10
12秒前
一抹冷色调完成签到 ,获得积分10
15秒前
16秒前
19秒前
喵总发布了新的文献求助20
23秒前
Ava应助紧张的芒果采纳,获得10
25秒前
28秒前
yudandan@CJLU发布了新的文献求助10
29秒前
31秒前
33秒前
37秒前
37秒前
愉快雅彤完成签到 ,获得积分10
39秒前
潘健康完成签到,获得积分10
41秒前
42秒前
43秒前
懵懂的沛珊完成签到,获得积分20
43秒前
46秒前
48秒前
虚幻的机器猫完成签到 ,获得积分10
49秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
De arte gymnastica. The art of gymnastics 600
少脉山油柑叶的化学成分研究 530
Mechanical Methods of the Activation of Chemical Processes 510
Electronic Structure Calculations and Structure-Property Relationships on Aromatic Nitro Compounds 500
Berns Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2417891
求助须知:如何正确求助?哪些是违规求助? 2109859
关于积分的说明 5336710
捐赠科研通 1837017
什么是DOI,文献DOI怎么找? 914829
版权声明 561080
科研通“疑难数据库(出版商)”最低求助积分说明 489249