A first principles analysis of potential-dependent structural evolution of active sites in Fe-N-C catalysts

密度泛函理论 电化学 催化作用 活动站点 碳纤维 化学 溶剂化 之字形的 化学物理 从头算 腐蚀 材料科学 计算化学 电极 物理化学 分子 有机化学 复合材料 复合数 数学 几何学
作者
Ankita Morankar,Siddharth Deshpande,Zhenhua Zeng,Plamen Atanassov,Jeffrey Greeley
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:120 (49) 被引量:19
标识
DOI:10.1073/pnas.2308458120
摘要

Fe-N-C (iron–nitrogen–carbon) electrocatalysts have emerged as potential alternatives to precious metal-based materials for the oxygen reduction reaction (ORR). However, the structure of these materials under electrochemical conditions is not well understood, and their poor stability in acidic environments poses a formidable challenge for successful adoption in commercial fuel cells. To provide molecular-level insights into these complex phenomena, we combine periodic density functional theory (DFT) calculations, exhaustive treatment of coadsorption effects for ORR reaction intermediates, including O and OH, and comprehensive analysis of solvation stabilization effects to construct voltage-dependent ab initio thermodynamic phase diagrams that describe the in situ structure of the active sites. These structures are further linked to activity and stability descriptors that can be compared with experimental parameters such as the half-wave potential for ORR and the onset potential for carbon corrosion and CO 2 evolution. The results indicate that pyridinic Fe sites at zigzag carbon edges, as well as other edge sites, exhibit high activity for ORR compared to sites in the bulk. However, edges neighboring the active sites are prone to instability via overoxidation and consequent site loss. The results suggest that it could be beneficial to synthesize Fe-N-C catalysts with small sizes and large perimeter edge lengths to enhance ORR activity, while voltage fluctuations should be limited during fuel cell operation to prevent carbon corrosion of overoxidized edges.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘佳恬完成签到,获得积分10
刚刚
我爱科研完成签到,获得积分10
1秒前
天123完成签到 ,获得积分10
1秒前
zmnzmnzmn发布了新的文献求助10
1秒前
2秒前
成就的曼梅完成签到,获得积分10
2秒前
赘婿应助xh采纳,获得10
3秒前
4秒前
帅气的听白应助albertxin采纳,获得10
4秒前
4秒前
grs完成签到,获得积分10
4秒前
李杰完成签到 ,获得积分10
5秒前
SciGPT应助傲娇的蛋挞采纳,获得10
5秒前
我爱科研发布了新的文献求助10
5秒前
瘦瘦的鬼神完成签到,获得积分10
6秒前
LONGLONG发布了新的文献求助10
6秒前
科研通AI5应助Sugar采纳,获得10
7秒前
浮游应助成就的曼梅采纳,获得10
7秒前
cg666完成签到 ,获得积分10
8秒前
领导范儿应助小鞠佩奇采纳,获得10
8秒前
可知蝶恋花完成签到,获得积分10
8秒前
刘国材完成签到 ,获得积分10
8秒前
慕青应助khan采纳,获得10
8秒前
Criminology34应助LI采纳,获得10
10秒前
10秒前
小团子完成签到,获得积分10
10秒前
CipherSage应助zzz采纳,获得10
10秒前
zy完成签到,获得积分10
10秒前
wanci应助可知蝶恋花采纳,获得10
12秒前
13秒前
华仔应助Stephen采纳,获得30
13秒前
13秒前
从容甜瓜完成签到 ,获得积分10
14秒前
小贝完成签到,获得积分10
14秒前
怦然心动发布了新的文献求助10
14秒前
科研通AI5应助欢呼万恶采纳,获得10
15秒前
瘦瘦的铅笔完成签到 ,获得积分10
15秒前
顾矜应助玄博元采纳,获得10
16秒前
卡卡罗特完成签到 ,获得积分10
16秒前
LI完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5183642
求助须知:如何正确求助?哪些是违规求助? 4369861
关于积分的说明 13607883
捐赠科研通 4221715
什么是DOI,文献DOI怎么找? 2315442
邀请新用户注册赠送积分活动 1314022
关于科研通互助平台的介绍 1262893