A Generalised Method for Friction Optimisation of Surface Textured Seals by Machine Learning

背景(考古学) 机器学习 润滑 人工智能 纹理(宇宙学) 摩擦学 计算机科学 曲面(拓扑) 活塞(光学) 机械工程 算法 材料科学 数学 工程类 几何学 地质学 图像(数学) 波前 古生物学 物理 光学
作者
Markus Brase,J. Binder,Mirco Jonkeren,Matthias Wangenheim
出处
期刊:Lubricants [MDPI AG]
卷期号:12 (1): 20-20 被引量:6
标识
DOI:10.3390/lubricants12010020
摘要

Friction behaviour is an important characteristic of dynamic seals. Surface texturing is an effective method to control the friction level without the need to change materials or lubricants. However, it is difficult to put the manual prediction of optimal friction reducing textures as a function of operating conditions into practice. Therefore, in this paper, we use machine learning techniques for the prediction of optimal texture parameters for friction optimisation. The application of pneumatic piston seals serves as an illustrative example to demonstrate the machine learning method and results. The analyses of this work are based on experimentally determined data of surface texture parameters, defined by the dimple diameter, distance, and depth. Furthermore friction data between the seal and the pneumatic cylinder are measured in different friction regimes from boundary over mixed up to hydrodynamic lubrication. A particular innovation of this work is the definition of a generalised method that guides the entire machine learning process from raw data acquisition to model prediction, without committing to only a few learning algorithms. A large number of 26 regression learning algorithms are used to build machine learning models through supervised learning to evaluate the suitability of different models in the specific application context. In order to select the best model, mathematical metrics and tribological relationships, like Stribeck curves, are applied and compared with each other. The resulting model is utilised in the subsequent friction optimisation step, in which optimal surface texture parameter combinations with the lowest friction coefficients are predicted over a defined interval of relative velocities. Finally, the friction behaviour is evaluated in the context of the model and optimal value combinations of the surface texture parameters are identified for different lubrication conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
JX完成签到,获得积分10
刚刚
现代秋白完成签到 ,获得积分20
刚刚
刚刚
徐昊发布了新的文献求助10
刚刚
李健应助颜宇翔采纳,获得10
1秒前
2秒前
nangua发布了新的文献求助10
2秒前
2秒前
ycccc99发布了新的文献求助10
2秒前
3秒前
科研通AI6应助麦香鱼采纳,获得10
3秒前
zjy发布了新的文献求助10
3秒前
GXY完成签到,获得积分10
3秒前
顾矜应助学道采纳,获得10
3秒前
4秒前
4秒前
八宝周完成签到,获得积分10
4秒前
4秒前
5秒前
跳跃巨人完成签到,获得积分10
5秒前
5秒前
5秒前
mi发布了新的文献求助10
5秒前
5秒前
ZBY发布了新的文献求助10
5秒前
一地狗粮发布了新的文献求助10
5秒前
碝磩发布了新的文献求助10
6秒前
大鱼儿发布了新的文献求助10
7秒前
共享精神应助湫殇采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
大满完成签到,获得积分10
8秒前
ccccc完成签到 ,获得积分10
8秒前
9秒前
星星发布了新的文献求助10
9秒前
宅多点应助旅行的天空采纳,获得10
9秒前
9秒前
JamesPei应助香香香采纳,获得10
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5552538
求助须知:如何正确求助?哪些是违规求助? 4637330
关于积分的说明 14648616
捐赠科研通 4579115
什么是DOI,文献DOI怎么找? 2511367
邀请新用户注册赠送积分活动 1486492
关于科研通互助平台的介绍 1457559