Refining Metabolic Network by Fuzzy Matching of Metabolite Names for Improving Metabolites Ranking Toward the Diseases

排名(信息检索) 匹配(统计) 精炼(冶金) 模糊逻辑 代谢物 计算机科学 人工智能 机器学习 数学 化学 生物化学 统计 物理化学
作者
S. Spelmen Vimalraj,Porkodi Rajendran
出处
期刊:Studies in computational intelligence 卷期号:: 3-18
标识
DOI:10.1007/978-981-99-8853-2_1
摘要

The aberrant form of the metabolites inside the human body is known as a disease in other terms. Metabolite’s impact on the complex diseases of humans is a very crucial one. Therefore, the depth study of the relationships between the metabolites and diseases is very beneficial in understanding pathogenesis. This chapter proposes a network-based method to identify and rank the disease-related metabolites. In this research, for calculating the disease similarity and the metabolite similarity, infer disease similarity and miRNA similarity have been applied. The miRNA-based disease-related metabolite identification performance was further improved by proposing the Subcellular Localization Weight Based miRNA Similarity (SLWBMISM), where subcellular localization of metabolites was considered to find the more similar metabolites. A fuzzy matching algorithm is adopted to identify the identical names from the two models so that the computational complexity of SLWBMISM can be reduced. After obtaining the identical names of metabolites, two models have been merged without duplication, and metabolite similarity is obtained using SLWBMISM. Then the process of reconstructing the metabolic network based on disease and metabolite similarity was done. At last, a random walk is executed on the reconstructed network to identify and rank disease-related metabolites. For this research work total of 1955 metabolites from network A, 883 metabolites from network B, and 662 diseases were extracted from the experimental datasets. Both networks are merged, and fuzzy matching of metabolite names is applied to avoid the redundant metabolite participating in the metabolite network more than one time. After applying the SLWBMISM method to the merged network, 594521 similarities have been obtained. The proposed method, FM-SLWBMISM, helps find more similar metabolites and enhances the efficiency of SLWBMISM in identifying metabolite prioritization toward complex diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
QianchengZhao应助小黑鲨采纳,获得10
刚刚
小心薛了你完成签到,获得积分10
1秒前
发嗲的雨筠完成签到,获得积分10
1秒前
马前人完成签到,获得积分10
1秒前
1秒前
wyblobin完成签到,获得积分10
1秒前
cmh完成签到,获得积分10
3秒前
马前人发布了新的文献求助10
4秒前
4秒前
不万能测光表完成签到,获得积分20
4秒前
充电宝应助杨江丽采纳,获得10
4秒前
文静的行恶完成签到,获得积分10
4秒前
斯文奇迹完成签到,获得积分10
5秒前
若水发布了新的文献求助10
5秒前
one完成签到 ,获得积分10
6秒前
es完成签到,获得积分10
7秒前
坡坡大王应助xzn1123采纳,获得10
7秒前
7秒前
nasya完成签到,获得积分10
9秒前
罗大大完成签到 ,获得积分10
9秒前
9秒前
医痞子完成签到,获得积分10
10秒前
10秒前
虚幻沛文完成签到 ,获得积分10
11秒前
CChi0923完成签到,获得积分10
11秒前
坡坡大王给机灵的妙芙的求助进行了留言
12秒前
王山完成签到,获得积分10
12秒前
13秒前
怡然的煜城完成签到,获得积分10
13秒前
NexusExplorer应助tourist585采纳,获得10
14秒前
云深完成签到 ,获得积分10
14秒前
米缸发布了新的文献求助10
14秒前
BruceQ完成签到,获得积分10
14秒前
iota发布了新的文献求助40
15秒前
小赞完成签到,获得积分10
15秒前
hehehe85200完成签到,获得积分10
15秒前
exy完成签到,获得积分10
15秒前
我睡觉的时候不困完成签到 ,获得积分10
16秒前
16秒前
在水一方发布了新的文献求助10
16秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816035
求助须知:如何正确求助?哪些是违规求助? 3359486
关于积分的说明 10403177
捐赠科研通 3077391
什么是DOI,文献DOI怎么找? 1690292
邀请新用户注册赠送积分活动 813716
科研通“疑难数据库(出版商)”最低求助积分说明 767759