Sine: Similarity is not enough for mitigating Local Model Poisoning Attacks in Federated Learning

计算机科学 计算机安全 趋同(经济学) 相似性(几何) GSM演进的增强数据速率 正弦 模型攻击 人工智能 几何学 数学 经济 图像(数学) 经济增长
作者
Harsh Kasyap,Somanath Tripathy
出处
期刊:IEEE Transactions on Dependable and Secure Computing [IEEE Computer Society]
卷期号:21 (5): 4481-4494 被引量:6
标识
DOI:10.1109/tdsc.2024.3353317
摘要

Federated learning is a collaborative learning paradigm that brings the model to the edge for training over the participants' local data under the orchestration of a trusted server. Though this paradigm protects data privacy, the aggregator has no control over the local data or model at the edge. So, malicious participants could perturb their locally held data or model to post an insidious update, degrading global model accuracy. Recent Byzantine-robust aggregation rules could defend against data poisoning attacks. Also, model poisoning attacks have become more ingenious and adaptive to the existing defenses. But these attacks are crafted against specific aggregation rules. This work presents a generic model poisoning attack framework named Sine (Similarity is not enough), which harnesses vulnerabilities in cosine similarity to increase the impact of poisoning attacks by 20-30%. Sine makes convergence unachievable by maintaining the persistence of the attack. Further, we propose an effective defense technique called FLTC (FL Trusted Coordinates) to avoid such issues. FLTC selects the trusted coordinates and aggregates them based on the change in their direction and magnitude with respect to a trusted base model update. FLTC could successfully defend against poisoning attacks, including adaptive model poisoning attacks, by restricting the attack impact to 2-4%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
周周发布了新的文献求助10
1秒前
果子完成签到,获得积分10
1秒前
1秒前
江水发布了新的文献求助10
2秒前
天天快乐应助Mango采纳,获得10
2秒前
阳光的冰露完成签到,获得积分10
3秒前
华仔应助zj3tears采纳,获得10
3秒前
xh完成签到,获得积分10
3秒前
3秒前
领导范儿应助yy采纳,获得10
4秒前
QQ完成签到,获得积分10
4秒前
5秒前
5秒前
Lee完成签到,获得积分10
5秒前
sff发布了新的文献求助30
6秒前
6秒前
王筱发布了新的文献求助10
7秒前
ding应助jacky010采纳,获得10
7秒前
8秒前
周周发布了新的文献求助10
9秒前
nl发布了新的文献求助10
9秒前
田様应助科研通管家采纳,获得10
9秒前
MIN应助科研通管家采纳,获得50
10秒前
汉堡包应助科研通管家采纳,获得10
10秒前
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
彭于晏应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
情怀应助科研通管家采纳,获得10
10秒前
LaTeXer应助科研通管家采纳,获得150
11秒前
顾矜应助科研通管家采纳,获得10
11秒前
乐乐应助科研通管家采纳,获得10
11秒前
从容的以莲完成签到 ,获得积分10
11秒前
changping应助科研通管家采纳,获得150
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
changping应助科研通管家采纳,获得150
11秒前
浮游应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Modern Britain, 1750 to the Present (求助第2版!!!) 400
Jean-Jacques Rousseau et Geneve 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5157230
求助须知:如何正确求助?哪些是违规求助? 4352545
关于积分的说明 13552041
捐赠科研通 4195693
什么是DOI,文献DOI怎么找? 2301218
邀请新用户注册赠送积分活动 1301058
关于科研通互助平台的介绍 1246266