Quantitative Ischemic Lesions of Portable Low–Field Strength MRI Using Deep Learning–Based Super-Resolution

医学 磁共振成像 组内相关 有效扩散系数 核医学 磁共振弥散成像 冲程(发动机) 放射科 机械工程 工程类 临床心理学 心理测量学
作者
Yueyan Bian,L. Wang,Jin Li,Xiaoxu Yang,Erling Wang,Yingying Li,Yuehong Liu,Lei Xiang,Qi Yang
出处
期刊:Stroke [Lippincott Williams & Wilkins]
标识
DOI:10.1161/strokeaha.124.050540
摘要

BACKGROUND: Deep learning–based synthetic super-resolution magnetic resonance imaging (SynthMRI) may improve the quantitative lesion performance of portable low–field strength magnetic resonance imaging (LF-MRI). The aim of this study is to evaluate whether SynthMRI improves the diagnostic performance of LF-MRI in assessing ischemic lesions. METHODS: We retrospectively included 178 stroke patients and 104 healthy controls with both LF-MRI and high–field strength magnetic resonance imaging (HF-MRI) examinations. Using HF-MRI as the ground truth, the deep learning–based super-resolution framework (SCUNet) was pretrained using large-scale open-source data sets to generate SynthMRI images from LF-MRI images. Participants were split into a training set (64.2%) to fine-tune the pretrained SCUNet, and a testing set (35.8%) to evaluate the performance of SynthMRI. Sensitivity and specificity of LF-MRI and SynthMRI were assessed. Agreement with HF-MRI for Alberta Stroke Program Early Computed Tomography Score in the anterior and posterior circulation (diffusion-weighted imaging–Alberta Stroke Program Early Computed Tomography Score and diffusion-weighted imaging–posterior circulation Alberta Stroke Program Early Computed Tomography Score) was evaluated using intraclass correlation coefficients (ICCs). Agreement with HF-MRI for lesion volume and mean apparent diffusion coefficient (ADC) within lesions was assessed using both ICCs and Pearson correlation coefficients. RESULTS: SynthMRI demonstrated significantly higher sensitivity and specificity than LF-MRI (89.0% [83.3%–94.6%] versus 77.1% [69.5%–84.7%]; P <0.001 and 91.3% [84.7%–98.0%] versus 71.0% [60.3%–81.7%]; P <0.001, respectively). The ICCs of diffusion-weighted imaging–Alberta Stroke Program Early Computed Tomography Score between SynthMRI and HF-MRI were also better than that between LF-MRI and HF-MRI (0.952 [0.920–0.972] versus 0.797 [0.678–0.876], P <0.001). For lesion volume and mean apparent diffusion coefficient within lesions, SynthMRI showed significantly higher agreement ( P <0.001) with HF-MRI (ICC>0.85, r >0.78) than LF-MRI (ICC>0.45, r >0.35). Furthermore, for lesions during various poststroke phases, SynthMRI exhibited significantly higher agreement with HF-MRI than LF-MRI during the early hyperacute and subacute phases. CONCLUSIONS: SynthMRI demonstrates high agreement with HF-MRI in detecting and quantifying ischemic lesions and is better than LF-MRI, particularly for lesions during the early hyperacute and subacute phases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可靠的南霜完成签到 ,获得积分10
刚刚
沉醉完成签到 ,获得积分10
1秒前
hohokuz完成签到,获得积分10
1秒前
秦磊完成签到,获得积分10
1秒前
fvnsj完成签到,获得积分10
2秒前
欧阳静芙完成签到,获得积分10
2秒前
杨冰发布了新的文献求助10
2秒前
默默诗云完成签到,获得积分10
3秒前
小蘑菇应助Li采纳,获得10
3秒前
3秒前
蛋壳儿完成签到,获得积分10
4秒前
yiming完成签到,获得积分10
4秒前
孙玮完成签到,获得积分10
4秒前
QY发布了新的文献求助10
4秒前
月亮打盹儿完成签到,获得积分10
4秒前
meatball1982完成签到,获得积分10
6秒前
现实的日记本完成签到,获得积分10
6秒前
lizhiqian2024完成签到,获得积分20
7秒前
magic完成签到,获得积分10
7秒前
cyh发布了新的文献求助10
8秒前
zhang完成签到,获得积分10
8秒前
无情干饭崽完成签到,获得积分10
9秒前
9秒前
cdercder应助yuqinghui98采纳,获得10
9秒前
盛夏完成签到,获得积分10
9秒前
pizza完成签到,获得积分10
10秒前
黄74185296完成签到,获得积分10
10秒前
SYLH应助meatball1982采纳,获得10
11秒前
11秒前
nokoko完成签到 ,获得积分10
11秒前
一鸣完成签到,获得积分10
11秒前
阿瑶与呆呆完成签到,获得积分10
11秒前
zzz完成签到,获得积分10
11秒前
天天快乐应助wjw采纳,获得10
12秒前
牛太虚完成签到,获得积分10
13秒前
wansida完成签到,获得积分10
13秒前
逸兴遄飞完成签到,获得积分20
13秒前
Accepted完成签到,获得积分10
13秒前
年鱼精完成签到 ,获得积分10
13秒前
王金金发布了新的文献求助10
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784938
求助须知:如何正确求助?哪些是违规求助? 3330274
关于积分的说明 10245276
捐赠科研通 3045590
什么是DOI,文献DOI怎么找? 1671719
邀请新用户注册赠送积分活动 800686
科研通“疑难数据库(出版商)”最低求助积分说明 759609