化学
卡宾
还原(数学)
纳米线
聚合物
组合化学
纳米技术
高分子化学
有机化学
催化作用
材料科学
几何学
数学
作者
Yuliang Chen,Kecheng Wei,Hanyi Duan,Haobo Sun,Yu Zhang,A. Zohaib,Pengcheng Zhu,Jie He,Shouheng Sun
摘要
The structural stability of nanocatalysts during electrochemical CO2 reduction (CO2RR) is crucial for practical applications. However, highly active nanocatalysts often reconstruct under reductive conditions, requiring stabilization strategies to maintain activity. Here, we demonstrate that the N-heterocyclic carbene (NHC) polymer stabilizes Au nanowire (NW) catalysts for selective CO2 reduction to CO over a broad potential range, enabling coupling with Cu NWs for one-step tandem conversion of CO2 to C2H4. By combining the hydrophobicity of the polystyrene chain and the strong binding of NHC to Au, the polymer stabilizes Au NWs and promotes CO2RR to CO with excellent selectivity (>90%) across -0.4 V to -1.0 V (vs RHE), a significantly broader range than unmodified Au NWs (-0.5 V to -0.7 V). Stable CO2RR at negative potentials yields a high jCO of 142 A/g Au at -1.0 V. In situ ATR-IR analysis indicates that the NHC polymer regulates the water microenvironment and suppresses hydrogen evolution at high overpotential. Moreover, NHC-Au NWs maintain excellent stability during 10 h of CO2RR testing, preserving the NW morphology and catalytic performance, while unmodified NWs degrade into nanoparticles with reduced activity and selectivity. NHC-Au NWs can be coupled with Cu NWs in a flow cell to catalyze CO2RR to C2H4 with 58% efficiency and a partial current density of 70 mA/cm2 (overall C2 product efficiency of 65%). This study presents an adaptable strategy to enhance the catalyst microenvironment, ensure stability, and enable efficient tandem CO2 conversion into value-added hydrocarbons.
科研通智能强力驱动
Strongly Powered by AbleSci AI