Unraveling the Common Nature of O and S Doping in Improving Electrochemical O2 Reduction Reaction Performance of FeN4C

电化学 催化作用 还原(数学) 兴奋剂 化学 无机化学 材料科学 物理化学 电极 有机化学 光电子学 数学 几何学
作者
Yuan Yuan,Jiapeng Ma,Baotao Kang,Jin Yong Lee
出处
期刊:ACS Catalysis [American Chemical Society]
卷期号:15 (5): 4039-4050 被引量:1
标识
DOI:10.1021/acscatal.4c06491
摘要

Heteroatom-doped Fe-N-C catalysts have emerged as promising alternatives to noble metals for the oxygen reduction reaction (ORR) due to their lower cost. However, the underlying mechanisms responsible for their enhanced performance, particularly electrochemical stability, remain a subject of debate. This study leverages density functional theory calculations coupled with a constant potential and implicit solvent model to investigate the electrochemical stabilities and activities of pyridinic (PD-) and pyrrolic FeN4C (PL-FeN4C) catalysts. Our findings reveal that the hydrogenation susceptibility of coordinating nitrogen atoms is a critical determinant of electrochemical stability within FeN4C catalysts. Moreover, we demonstrate that oxygen and sulfur doping exerts similar effects on enhancing the overall ORR performance of PD-FeN4C catalysts: (1) by reducing the p-band center of the coordinating nitrogen, thereby improving their resistance to hydrogenation, and (2) by increasing the valence electrons of iron, leading to stronger adsorption of reaction intermediates and consequently enhanced ORR activity. Finally, our predictions suggest that O/S-doped PL-FeN4C catalysts could achieve significantly improved electrochemical stability and superior ORR performance in both acidic and alkaline environments. These insights contribute to a deeper understanding of microenvironment engineering in single-atom catalysts (SACs) and offer valuable guidelines for the development of unprecedented M-N-C catalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
李小闹发布了新的文献求助10
1秒前
2秒前
bkagyin应助肉被卡采纳,获得10
2秒前
liuarise发布了新的文献求助10
3秒前
小二郎应助666采纳,获得10
3秒前
4秒前
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
称心誉发布了新的文献求助10
5秒前
丁丁完成签到,获得积分20
6秒前
6秒前
蒲公英发布了新的文献求助10
8秒前
haha完成签到,获得积分20
8秒前
量子星尘发布了新的文献求助10
9秒前
LXx发布了新的文献求助10
9秒前
9秒前
张宇龙发布了新的文献求助10
10秒前
11秒前
12秒前
12秒前
科研通AI6应助糖焗小馒头采纳,获得10
13秒前
Wei完成签到,获得积分10
14秒前
15秒前
NexusExplorer应助称心誉采纳,获得10
15秒前
15秒前
15秒前
深情安青应助zml采纳,获得10
16秒前
DueDue0327发布了新的文献求助10
16秒前
zlxxianer完成签到,获得积分20
16秒前
饭小心发布了新的文献求助10
17秒前
踏实嚣完成签到 ,获得积分10
18秒前
隐形曼青应助mildjorker采纳,获得10
18秒前
19秒前
19秒前
blue发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5662345
求助须知:如何正确求助?哪些是违规求助? 4842231
关于积分的说明 15099514
捐赠科研通 4820844
什么是DOI,文献DOI怎么找? 2580317
邀请新用户注册赠送积分活动 1534341
关于科研通互助平台的介绍 1492985