Biosensor-Assisted Multitarget Gene Fine-Tuning for N-Acetylneuraminic Acid Production in Escherichia coli with Sole Carbon Source Glucose

大肠杆菌 碳源 生物传感器 化学 碳纤维 生物化学 基因 材料科学 复合数 复合材料
作者
Bin Qi,Jianing Zhang,Wenlong Ma,Yaokang Wu,Xueqin Lv,Long Liu,Jianghua Li,Guocheng Du,Yanfeng Liu
出处
期刊:Journal of Agricultural and Food Chemistry [American Chemical Society]
被引量:1
标识
DOI:10.1021/acs.jafc.5c02081
摘要

N-Acetylneuraminic acid (NeuAc) is widely used in the food and medical industries. Microbial fermentation has become one of the most important approaches for NeuAc production. However, current research on NeuAc is confronted with challenges, including high production costs, interference from competitive pathways, and low conversion efficiency, all of which impede its efficient production. In this study, an engineered Escherichia coli capable of utilizing glucose as the sole carbon source for NeuAc production was constructed by optimizing the glucose utilization pathway, competitive pathways, and redox balance of NADH/NAD+. Subsequently, pathway genes were systematically upregulated to identify key target genes for improving NeuAc biosynthesis. The gene cluster glmSA*-glmM-SeglmU was identified as the key engineering target. To achieve multitarget coordinated optimization of this gene cluster in vivo, a highly responsive biosensor for NeuAc was developed, exhibiting a maximum response ratio of 10.62-fold. By the construction of random mutation libraries and integration of the NeuAc-responsive biosensor with high-throughput screening using flow cytometry, the expression levels of three key genes were synergistically optimized. As a result, highly efficient NeuAc-producing strain A39 was successfully obtained. In a 3-L bioreactor, the strain achieved a NeuAc titer of 58.26 g·L-1 with a productivity of 0.83 g·L-1·h-1, representing the highest reported production of NeuAc using glucose as the sole carbon source.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
瑄瑄发布了新的文献求助10
刚刚
1秒前
脑洞疼应助oo采纳,获得10
1秒前
Re完成签到,获得积分10
1秒前
科研通AI5应助小鱼采纳,获得10
1秒前
科研通AI6应助科研小虫虫采纳,获得10
1秒前
2秒前
roy完成签到,获得积分10
2秒前
feifei发布了新的文献求助10
2秒前
宣秋烟发布了新的文献求助10
3秒前
山前发布了新的文献求助10
3秒前
外向寄云完成签到,获得积分10
4秒前
梅赛德斯完成签到,获得积分10
4秒前
5秒前
RLLLLLLL完成签到 ,获得积分10
5秒前
6秒前
外向寄云发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
uone完成签到,获得积分10
7秒前
8秒前
9秒前
酷波er应助自然的茉莉采纳,获得10
9秒前
hty发布了新的文献求助30
9秒前
xxxzy完成签到,获得积分10
9秒前
fanssw完成签到 ,获得积分0
10秒前
科研通AI2S应助wuxunxun2015采纳,获得10
10秒前
11秒前
12秒前
NexusExplorer应助山前采纳,获得10
12秒前
cc完成签到,获得积分10
12秒前
小刘发布了新的文献求助10
13秒前
传奇3应助Sylvia采纳,获得30
13秒前
李瑞发布了新的文献求助10
14秒前
14秒前
金桔儿发布了新的文献求助10
14秒前
CodeCraft应助韶卿采纳,获得10
14秒前
14秒前
14秒前
独角兽完成签到,获得积分10
14秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4230981
求助须知:如何正确求助?哪些是违规求助? 3764544
关于积分的说明 11828788
捐赠科研通 3423606
什么是DOI,文献DOI怎么找? 1878693
邀请新用户注册赠送积分活动 931773
科研通“疑难数据库(出版商)”最低求助积分说明 839320