Model-Based RL Decision-Making for UAVs Operating in GNSS-Denied, Degraded Visibility Conditions with Limited Sensor Capabilities

全球导航卫星系统应用 能见度 计算机科学 全球导航卫星系统增强 空中航行 实时计算 航空学 工程类 电信 全球定位系统 地理 气象学
作者
Sebastien Boiteau,Fernando Vanegas,Julian Galvez-Serna,Felipé Gonzalez
出处
期刊:Drones [MDPI AG]
卷期号:9 (6): 410-410 被引量:1
标识
DOI:10.3390/drones9060410
摘要

Autonomy in Unmanned Aerial Vehicle (UAV) navigation has enabled applications in diverse fields such as mining, precision agriculture, and planetary exploration. However, challenging applications in complex environments complicate the interaction between the agent and its surroundings. Conditions such as the absence of a Global Navigation Satellite System (GNSS), low visibility, and cluttered environments significantly increase uncertainty levels and cause partial observability. These challenges grow when compact, low-cost, entry-level sensors are employed. This study proposes a model-based reinforcement learning (RL) approach to enable UAVs to navigate and make decisions autonomously in environments where the GNSS is unavailable and visibility is limited. Designed for search and rescue operations, the system enables UAVs to navigate cluttered indoor environments, detect targets, and avoid obstacles under low-visibility conditions. The architecture integrates onboard sensors, including a thermal camera to detect a collapsed person (target), a 2D LiDAR and an IMU for localization. The decision-making module employs the ABT solver for real-time policy computation. The framework presented in this work relies on low-cost, entry-level sensors, making it suitable for lightweight UAV platforms. Experimental results demonstrate high success rates in target detection and robust performance in obstacle avoidance and navigation despite uncertainties in pose estimation and detection. The framework was first assessed in simulation, compared with a baseline algorithm, and then through real-life testing across several scenarios. The proposed system represents a step forward in UAV autonomy for critical applications, with potential extensions to unknown and fully stochastic environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈梅完成签到,获得积分10
1秒前
3秒前
CodeCraft应助翎儿响叮当采纳,获得10
3秒前
chai发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
liweiya发布了新的文献求助10
5秒前
6秒前
7秒前
wanci应助ywl采纳,获得10
7秒前
毕业就好发布了新的文献求助30
8秒前
樊新竹完成签到,获得积分10
8秒前
9秒前
lucky完成签到,获得积分10
9秒前
10秒前
zzm23完成签到,获得积分10
10秒前
10秒前
11秒前
12秒前
12秒前
今后应助liweiya采纳,获得10
12秒前
Mia完成签到 ,获得积分10
12秒前
asdasd0发布了新的文献求助10
13秒前
lucky发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
ping完成签到,获得积分10
13秒前
在水一方应助张浩敏采纳,获得10
13秒前
14秒前
小鱼发布了新的文献求助10
15秒前
默默善愁发布了新的文献求助100
15秒前
15秒前
从容傲柏完成签到,获得积分10
16秒前
GGGirafe发布了新的文献求助30
16秒前
董小婷完成签到 ,获得积分10
16秒前
cva9514发布了新的文献求助10
17秒前
英姑应助郑思恩采纳,获得10
20秒前
21秒前
islanddd发布了新的文献求助10
21秒前
无辜玉米完成签到 ,获得积分10
22秒前
量子星尘发布了新的文献求助10
23秒前
25秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5696091
求助须知:如何正确求助?哪些是违规求助? 5105380
关于积分的说明 15218112
捐赠科研通 4852172
什么是DOI,文献DOI怎么找? 2602992
邀请新用户注册赠送积分活动 1554614
关于科研通互助平台的介绍 1512681