Deep Learning Electrocardiogram Model for Risk Stratification of Coronary Revascularization Need in the Emergency Department

医学 血运重建 内科学 心脏病学 心肌梗塞 队列 急诊科 急性冠脉综合征 诊断试验中的似然比 置信区间 接收机工作特性 精神科
作者
Antonius Büscher,Lucas Plagwitz,Kemal Yildirim,Tobias Brix,Philipp Neuhaus,Lucas Bickmann,Amélie Friederike Menke,Vincent F van Almsick,Hermann Pavenstädt,Philipp Kümpers,Dominik Heider,Julian Varghese,Lars Eckardt
出处
期刊:European Heart Journal [Oxford University Press]
标识
DOI:10.1093/eurheartj/ehaf254
摘要

Abstract Background and Aims Identification of patients with acute coronary syndrome requiring coronary revascularization can be challenging due to inconclusive electrocardiogram (ECG) findings or biomarker results. A deep learning model to detect ECG patterns associated with revascularization likelihood was developed, aiming to guide further assessment and reduce diagnostic uncertainty. Methods A convolutional neural network model was trained on 144,691 ED visits from a US cohort (60±19 years; 53% female; 0.6% revascularization), tested on a separate test cohort (n=35,995), and benchmarked against clinician ECG interpretation and cardiac troponin T (TnT). External validation was performed for the outcomes revascularization and type 1 myocardial infarction (MI) on 18,673 ED visits from Europe (55±21 years; 49% female; 1.5% revascularization; 1% type 1 MI). Primary performance metric was area under the receiver operating characteristic curve (AUROC). Results In the test cohort, the model achieved an AUROC of 0.91 (95% confidence interval [CI] 0.91–0.91), outperforming clinician ECG interpretation (AUROC 0.65, 95% CI 0.54–0.76) and conventional cardiac TnT (AUROC 0.71). In the external validation cohort, ECG model AUROC was 0.81 (95% CI 0.81–0.82) for revascularization, and 0.85 (95% CI 0.84–0.85) for type 1 MI, compared to 0.67 (95% CI 0.54–0.81) and 0.74 (95% CI 0.56–0.92) for clinician interpretation, and 0.85 and 0.87 for high-sensitivity (hs)-TnT, respectively. The ECG model had higher specificity but lower sensitivity compared to hs-TnT. Conclusions The model was able to detect revascularization and type 1 MI with competitive performance, suggesting a potential role to complement current clinical assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
共享精神应助热心白玉采纳,获得10
刚刚
kermitds发布了新的文献求助10
2秒前
2秒前
Iven发布了新的文献求助10
2秒前
3秒前
泡芙完成签到,获得积分10
3秒前
4秒前
家迎松发布了新的文献求助10
5秒前
5秒前
朱孝培完成签到,获得积分10
6秒前
Mikasaaaaa发布了新的文献求助10
7秒前
7秒前
xx发布了新的文献求助10
7秒前
cwy发布了新的文献求助10
7秒前
开朗阁完成签到,获得积分10
8秒前
风是淡淡的云完成签到 ,获得积分10
8秒前
大个应助张婷采纳,获得10
9秒前
Aegean发布了新的文献求助30
11秒前
shimhjy应助cwy采纳,获得10
11秒前
hh发布了新的文献求助10
12秒前
唐画完成签到,获得积分10
14秒前
14秒前
李东东完成签到 ,获得积分10
16秒前
wy1693207859完成签到,获得积分10
16秒前
Akim应助xx采纳,获得10
17秒前
秦之之完成签到 ,获得积分10
17秒前
动漫大师发布了新的文献求助10
17秒前
李爱国应助Yacon采纳,获得10
18秒前
香菜发布了新的文献求助10
19秒前
21秒前
外向烤鸡完成签到,获得积分10
21秒前
21秒前
海北完成签到 ,获得积分10
22秒前
23秒前
李爱国应助xzy998采纳,获得10
24秒前
SevenKing完成签到,获得积分10
25秒前
张婷发布了新的文献求助10
26秒前
hh完成签到,获得积分10
27秒前
27秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3803558
求助须知:如何正确求助?哪些是违规求助? 3348465
关于积分的说明 10338603
捐赠科研通 3064504
什么是DOI,文献DOI怎么找? 1682623
邀请新用户注册赠送积分活动 808381
科研通“疑难数据库(出版商)”最低求助积分说明 764038