A validated multivariable machine learning model to predict cardio-kidney risk in diabetic kidney disease

医学 血管病学 糖尿病 肾脏疾病 疾病 内科学 多元微积分 心脏病学 重症监护医学 机器学习 人工智能 计算机科学 内分泌学 工程类 控制工程
作者
James L. Januzzi,Naveed Sattar,Muthiah Vaduganathan,Craig A. Magaret,Rhonda F Rhyne,Yuxi Liu,Serge Masson,Javed Butler,Michael K. Hansen
出处
期刊:Cardiovascular Diabetology [BioMed Central]
卷期号:24 (1)
标识
DOI:10.1186/s12933-025-02779-5
摘要

Individuals with diabetic kidney disease (DKD) often suffer cardiac and kidney events. We sought to develop an accurate means by which to stratify risk in DKD. Clinical variables and biomarkers were evaluated for their ability to predict the adjudicated primary composite endpoint of CREDENCE (Canagliflozin and Renal Events in Diabetes with Established Nephropathy Clinical Evaluation) by 3 years. Using machine learning techniques, a parsimonious risk algorithm was developed. The final model included age, body-mass index, systolic blood pressure, and concentrations of N-terminal pro-B type natriuretic peptide, high sensitivity cardiac troponin T, insulin-like growth factor binding protein-7 and growth differentiation factor-15. The model had an in-sample C-statistic of 0.80 (95% CI = 0.77-0.83; P < 0.001). Dividing results into low, medium and high risk categories, for each increase in level the hazard ratio increased by 3.43 (95% CI = 2.72-4.32; P < 0.001). Low risk scores had negative predictive value of 94%, while high risk scores had positive predictive value of 58%. Higher values were associated with shorter time to event (log rank P < 0.001). Rising values at 1 year predicted higher risk for subsequent DKD events. Canagliflozin treatment reduced score results by 1 year with consistent event reduction across risk levels. Accuracy of the risk model was validated in separate cohorts from CREDENCE and the generally lower risk Canagliflozin Cardiovascular Assessment Study. We describe a validated risk algorithm that accurately predicts cardio-kidney outcomes across a broad range of baseline risk. CREDENCE (Canagliflozin and Renal Events in Diabetes with Established Nephropathy Clinical Evaluation; NCT02065791) and CANVAS (Canagliflozin Cardiovascular Assessment Study; NCT01032629/NCT01989754).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoruixue完成签到,获得积分10
1秒前
小四发布了新的文献求助10
2秒前
2秒前
咩咩洞完成签到,获得积分10
4秒前
Sean完成签到,获得积分10
5秒前
wyh3218完成签到 ,获得积分10
7秒前
TGU的小马同学完成签到 ,获得积分10
8秒前
8秒前
115566完成签到,获得积分20
9秒前
mazhihao完成签到 ,获得积分10
10秒前
11秒前
淡然思卉完成签到,获得积分10
11秒前
快乐学习每一天完成签到 ,获得积分10
12秒前
科研完成签到,获得积分10
13秒前
小四完成签到,获得积分10
14秒前
Capedem完成签到 ,获得积分10
14秒前
嘟嘟豆806完成签到 ,获得积分10
14秒前
yyx完成签到 ,获得积分10
18秒前
务实青筠完成签到 ,获得积分10
20秒前
agent完成签到 ,获得积分0
21秒前
范白容完成签到 ,获得积分0
22秒前
缓慢的一斩完成签到,获得积分10
23秒前
牛拉犁完成签到 ,获得积分10
25秒前
月光族应助快乐的远航采纳,获得10
27秒前
Lee完成签到,获得积分10
30秒前
祥子完成签到,获得积分10
30秒前
西红柿不吃皮完成签到 ,获得积分10
30秒前
清修完成签到,获得积分10
31秒前
Capedem完成签到 ,获得积分10
33秒前
眯眯眼的访冬完成签到 ,获得积分10
34秒前
AllRightReserved完成签到 ,获得积分10
37秒前
风信子deon01完成签到,获得积分10
41秒前
行云流水完成签到,获得积分10
42秒前
43秒前
天才小能喵完成签到 ,获得积分0
43秒前
六一完成签到 ,获得积分10
47秒前
hanzhipad举报刻苦的青文求助涉嫌违规
48秒前
北国雪未消完成签到 ,获得积分10
50秒前
小文殊发布了新的文献求助10
50秒前
优雅的千雁完成签到,获得积分10
52秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Power of High-Throughput Experimentation: General Topics and Enabling Technologies for Synthesis and Catalysis (Volume 1) 200
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827379
求助须知:如何正确求助?哪些是违规求助? 3369689
关于积分的说明 10456788
捐赠科研通 3089365
什么是DOI,文献DOI怎么找? 1699847
邀请新用户注册赠送积分活动 817534
科研通“疑难数据库(出版商)”最低求助积分说明 770251