Molecular dynamics perspective of the effects of laser thermal configurations on the dislocation and mechanical characteristics of FeNiCrCoCu HEA through powder bed fusion process

材料科学 极限抗拉强度 激光器 位错 融合 热的 激光功率缩放 复合材料 高熵合金 微观结构 光学 语言学 哲学 物理 气象学
作者
Ishat Raihan Jamil,Ali Muhit Mustaquim,Mahmudul Islam,Mohammad Nasim Hasan
出处
期刊:Materials today communications [Elsevier BV]
卷期号:33: 104998-104998 被引量:6
标识
DOI:10.1016/j.mtcomm.2022.104998
摘要

The implication of process thermal conditions on the dislocation and mechanical characteristics of FeNiCrCoCu high entropy alloy (HEA) blocks manufactured through powder bed fusion (PBF) under various laser configurations were explored using molecular dynamic (MD) study. The PBF process parameters have been systematically altered, such as laser scan speed from 0.4 Å/ps to 0.1 Å/ps, 1–4 unidirectional and reversing laser passes, as well as laser power from 100 µW to 220 µW, following previous literature. The results suggest that reducing the laser scanning speed up to a critical velocity of 0.2 Å/ps considerably improves mechanical strengths, however further speed reduction creates severe surface defects. Alternatively, the material's strengths could be effectively improved by annealing with multiple unidirectional laser passes over the same target area, rather than reversing the direction after subsequent passes. Interestingly, increasing laser power aids in the amelioration of material density ultimately leading to higher ultimate tensile strength (UTS) even in non-dislocation free structures. Dislocation analysis reveals that for single laser pass situations, the annihilation of the bulk sessile dislocations during tensile straining marks an early yield failure, leading to decreased UTS. Whereas, the yield points are more subtle in annealed blocks, allowing them to achieve higher UTS. Likewise, fewer sessile dislocations and stacking faults correspond to better ultimate compressive strength (UCS), although the compressive yield points are usually indistinguishable in most instances. Present atomistic findings enable researchers in understanding the underlying effects and help in the process optimization of emerging microscale additive manufacturing processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助edtaa采纳,获得10
刚刚
HCL发布了新的文献求助10
刚刚
111发布了新的文献求助10
2秒前
2秒前
归尘应助张尔采纳,获得100
3秒前
4秒前
国庆发布了新的文献求助10
4秒前
flylmy2008完成签到,获得积分10
6秒前
猩心发布了新的文献求助10
9秒前
Tarahu完成签到,获得积分10
10秒前
13秒前
科研通AI5应助宝宝时代采纳,获得10
14秒前
研友_Lmb15n完成签到,获得积分10
15秒前
16秒前
猩心完成签到,获得积分10
16秒前
yoyo发布了新的文献求助10
17秒前
17秒前
小蘑菇应助纠纠采纳,获得10
18秒前
机灵安白完成签到 ,获得积分10
21秒前
是小越啊发布了新的文献求助10
22秒前
若邻完成签到,获得积分10
22秒前
22秒前
22秒前
edtaa发布了新的文献求助10
22秒前
文献看不懂应助入戏太深采纳,获得10
23秒前
LingYun完成签到,获得积分10
24秒前
mawanyu发布了新的文献求助30
27秒前
27秒前
Owen应助lwl采纳,获得10
28秒前
AA发布了新的文献求助10
28秒前
Abiu发布了新的文献求助10
34秒前
科研通AI5应助yaning2022采纳,获得10
35秒前
科研通AI5应助Zenglongying采纳,获得10
36秒前
laochen发布了新的文献求助10
40秒前
41秒前
48秒前
48秒前
小马甲应助meimei采纳,获得10
52秒前
无花果应助zhdjj采纳,获得10
52秒前
Zenglongying发布了新的文献求助10
53秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776633
求助须知:如何正确求助?哪些是违规求助? 3322152
关于积分的说明 10208826
捐赠科研通 3037339
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797603
科研通“疑难数据库(出版商)”最低求助积分说明 757921