NiCoP/CoP sponge-like structure grown on stainless steel mesh as a high-performance electrocatalyst for hydrogen evolution reaction

塔菲尔方程 电催化剂 过电位 析氧 化学工程 催化作用 材料科学 电化学 电解 电解水 分解水 电解质 电极 无机化学 化学 有机化学 物理化学 光催化 工程类
作者
Gebrehiwet Abrham Gebreslase,M.V. Martı́nez-Huerta,David Sebastián,M.J. Lázaro
出处
期刊:Electrochimica Acta [Elsevier]
卷期号:438: 141538-141538 被引量:9
标识
DOI:10.1016/j.electacta.2022.141538
摘要

The stainless steel mesh (SSM) has received remarkable attention for hydrogen and oxygen evolution reactions. It was demonstrated that the SSM exhibits admirable performance towards oxygen evolution reaction (OER) electrocatalysis, while its catalytic activity for hydrogen evolution reaction (HER) remains quite low. This obstructs the utilization of SSM-based catalysts for sustainable complete water electrolysis. In this study, a facile hydrothermal route followed by a phosphorization process was adopted to transform commercially available SSM materials into high-performance and stable electrocatalysts for alkaline HER. We report an interconnected NiCoP-CoP sponge-like structure on SSM substrate without polymer binder. Benefiting from the 3D construction with high exposed surface area, close contact between electroactive species and conductive surface, and facilitated infiltration of electrolyte, the as-prepared NiCoP@SSM electrocatalyst brought an improved catalytic activity for HER, required a low overpotential of 138 mV to derive a current density of 10 mAcm−2 in 1.0 M KOH aqueous solution. The high performance of the NiCoP@SSM catalyst has also unveiled fast reaction kinetics (presents a small Tafel slope of 74 mV/dec), a relatively large electrochemical active surface area (ECSA), and small charge transfer resistance. Furthermore, the NiCoP@SSM electrode also presented excellent stability during long-term measurements, making it one of the most encouraging HER electrodes to date. This research study paves the way for the development of HER-active electrocatalysts made from SSMs that are commercially available, low-cost, and highly active.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
攀登转化高峰完成签到,获得积分10
1秒前
石头完成签到,获得积分20
1秒前
江泽应助yml采纳,获得20
2秒前
可爱的函函应助yml采纳,获得10
2秒前
JamesPei应助yml采纳,获得10
2秒前
小蘑菇应助yml采纳,获得10
2秒前
初晴应助yml采纳,获得20
2秒前
领导范儿应助yml采纳,获得10
2秒前
香蕉觅云应助yml采纳,获得10
2秒前
2秒前
华仔应助yml采纳,获得10
2秒前
SciGPT应助yml采纳,获得10
2秒前
慕青应助yml采纳,获得10
2秒前
Lucas应助正是太平风景采纳,获得10
3秒前
5秒前
秋雪瑶应助个个采纳,获得10
6秒前
7秒前
8秒前
8秒前
科研小白完成签到,获得积分10
8秒前
石头发布了新的文献求助10
8秒前
风中的电脑应助爱学习采纳,获得10
11秒前
不安青牛应助lxnnn采纳,获得10
11秒前
pengpeng发布了新的文献求助10
13秒前
独特觅翠发布了新的文献求助10
15秒前
wwyyccc完成签到,获得积分10
15秒前
俊秀的元灵应助heart采纳,获得100
17秒前
19秒前
daytoy完成签到,获得积分10
19秒前
19秒前
Jasper应助言灵鱼采纳,获得10
19秒前
ding应助凤里采纳,获得10
22秒前
桐桐应助不样钓鱼采纳,获得10
23秒前
酷波er应助阳光采纳,获得10
23秒前
个个发布了新的文献求助10
23秒前
纳斯达克发布了新的文献求助10
25秒前
霸气的小叮当完成签到,获得积分10
26秒前
26秒前
叶思言发布了新的文献求助10
28秒前
Hugo发布了新的文献求助10
28秒前
高分求助中
The three stars each : the Astrolabes and related texts 1070
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
Aspect and Predication: The Semantics of Argument Structure 666
De arte gymnastica. The art of gymnastics 600
少脉山油柑叶的化学成分研究 530
Berns Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2410309
求助须知:如何正确求助?哪些是违规求助? 2105829
关于积分的说明 5320082
捐赠科研通 1833323
什么是DOI,文献DOI怎么找? 913570
版权声明 560825
科研通“疑难数据库(出版商)”最低求助积分说明 488493