亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MASTER: Multi-Source Transfer Weighted Ensemble Learning for Multiple Sources Cross-Project Defect Prediction

计算机科学 学习迁移 集成学习 人工智能 机器学习 传输(计算) 数据挖掘 并行计算
作者
Haonan Tong,Dalin Zhang,Jiqiang Liu,Weiwei Xing,Lingyun Lu,Wei Lu,Yumei Wu
出处
期刊:IEEE Transactions on Software Engineering [IEEE Computer Society]
卷期号:50 (5): 1281-1305 被引量:3
标识
DOI:10.1109/tse.2024.3381235
摘要

Background: Multi-source cross-project defect prediction (MSCPDP) attempts to transfer defect knowledge learned from multiple source projects to the target project. MSCPDP has drawn increasing attention from academic and industry communities owing to its advantages compared with single-source cross-project defect prediction (SSCPDP). However, two main problems, which are how to effectively extract the transferable knowledge from each source dataset and how to measure the amount of knowledge transferred from each source dataset to the target dataset, seriously restrict the performance of existing MSCPDP models.

Objective: In this paper, we propose a novel multi-source transfer weighted ensemble learning (MASTER) method for MSCPDP.

Method: MASTER measures the weight of each source dataset based on feature importance and distribution difference and then extracts the transferable knowledge based on the proposed feature-weighted transfer learning algorithm. Experiments are performed on 30 software projects. We compare MASTER with the latest state-of-the-art MSCPDP methods with statistical test in terms of famous effort-unaware measures (i.e., PD, PF, AUC, and MCC) and two widely used effort-aware measures (Popt 20% and IFA).

Result: The experiment results show that: 1) MASTER can substantially improve the prediction performance compared with the baselines, e.g., an improvement of at least 49.1% in MCC, 48.1% in IFA; 2) MASTER significantly outperforms each baseline on most datasets in terms of AUC, MCC, Popt 20% and IFA; 3) MSCPDP model significantly performs better than the mean case of SSCPDP model on most datasets and even outperforms the best case of SSCPDP on some datasets.

Conclusion: It can be concluded that 1) it is very necessary to conduct MSCPDP, and 2) the proposed MASTER is a more promising alternative for MSCPDP.

最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
芋头粽子发布了新的文献求助30
刚刚
4秒前
欧皇发布了新的文献求助30
7秒前
lf发布了新的文献求助10
11秒前
scanker1981完成签到,获得积分10
12秒前
桐桐应助bbdd2334采纳,获得10
18秒前
19秒前
欧皇完成签到,获得积分20
21秒前
冷傲新柔发布了新的文献求助10
25秒前
26秒前
33秒前
HunterKK7发布了新的文献求助10
38秒前
轻松的惜芹应助yujie采纳,获得200
42秒前
沙雕续命完成签到,获得积分10
50秒前
51秒前
56秒前
漂亮采波发布了新的文献求助10
57秒前
开朗满天发布了新的文献求助10
1分钟前
1分钟前
华仔应助明亮猫咪采纳,获得10
1分钟前
搜集达人应助西域小飞侠采纳,获得10
1分钟前
Ava应助科研通管家采纳,获得10
1分钟前
赘婿应助科研通管家采纳,获得10
1分钟前
酷波er应助HunterKK7采纳,获得10
1分钟前
SciGPT应助开朗满天采纳,获得10
1分钟前
太清完成签到,获得积分10
1分钟前
lwm不想看文献完成签到 ,获得积分10
1分钟前
Djnsbj发布了新的文献求助10
1分钟前
闪闪蜜粉完成签到 ,获得积分10
1分钟前
NexusExplorer应助lf采纳,获得10
1分钟前
研友_VZG7GZ应助zzq采纳,获得10
1分钟前
小马甲应助执着的夜蓉采纳,获得10
1分钟前
1分钟前
oleskarabach完成签到,获得积分20
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
丘比特应助怡然的烤鸡采纳,获得10
1分钟前
coraline26完成签到,获得积分20
1分钟前
lf发布了新的文献求助10
1分钟前
huangy发布了新的文献求助10
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976608
求助须知:如何正确求助?哪些是违规求助? 3520720
关于积分的说明 11204567
捐赠科研通 3257359
什么是DOI,文献DOI怎么找? 1798716
邀请新用户注册赠送积分活动 877897
科研通“疑难数据库(出版商)”最低求助积分说明 806613