MASTER: Multi-Source Transfer Weighted Ensemble Learning for Multiple Sources Cross-Project Defect Prediction

计算机科学 学习迁移 集成学习 人工智能 机器学习 传输(计算) 数据挖掘 并行计算
作者
Haonan Tong,Dalin Zhang,Jiqiang Liu,Weiwei Xing,Lingyun Lu,Wei Lu,Yumei Wu
出处
期刊:IEEE Transactions on Software Engineering [IEEE Computer Society]
卷期号:50 (5): 1281-1305 被引量:3
标识
DOI:10.1109/tse.2024.3381235
摘要

Background: Multi-source cross-project defect prediction (MSCPDP) attempts to transfer defect knowledge learned from multiple source projects to the target project. MSCPDP has drawn increasing attention from academic and industry communities owing to its advantages compared with single-source cross-project defect prediction (SSCPDP). However, two main problems, which are how to effectively extract the transferable knowledge from each source dataset and how to measure the amount of knowledge transferred from each source dataset to the target dataset, seriously restrict the performance of existing MSCPDP models.

Objective: In this paper, we propose a novel multi-source transfer weighted ensemble learning (MASTER) method for MSCPDP.

Method: MASTER measures the weight of each source dataset based on feature importance and distribution difference and then extracts the transferable knowledge based on the proposed feature-weighted transfer learning algorithm. Experiments are performed on 30 software projects. We compare MASTER with the latest state-of-the-art MSCPDP methods with statistical test in terms of famous effort-unaware measures (i.e., PD, PF, AUC, and MCC) and two widely used effort-aware measures (Popt 20% and IFA).

Result: The experiment results show that: 1) MASTER can substantially improve the prediction performance compared with the baselines, e.g., an improvement of at least 49.1% in MCC, 48.1% in IFA; 2) MASTER significantly outperforms each baseline on most datasets in terms of AUC, MCC, Popt 20% and IFA; 3) MSCPDP model significantly performs better than the mean case of SSCPDP model on most datasets and even outperforms the best case of SSCPDP on some datasets.

Conclusion: It can be concluded that 1) it is very necessary to conduct MSCPDP, and 2) the proposed MASTER is a more promising alternative for MSCPDP.

最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ywindm完成签到,获得积分10
刚刚
wp4455777完成签到,获得积分10
1秒前
1秒前
勤恳惮发布了新的文献求助10
2秒前
闪闪草丛完成签到 ,获得积分10
3秒前
4秒前
清秀凡霜完成签到,获得积分10
4秒前
fanssw完成签到 ,获得积分10
5秒前
刘雅彪完成签到 ,获得积分10
5秒前
研友_VZG7GZ应助加百莉采纳,获得10
5秒前
公西谷芹发布了新的文献求助10
6秒前
zzzzzzy完成签到,获得积分20
8秒前
一点完成签到,获得积分10
8秒前
10秒前
sunshine完成签到,获得积分10
11秒前
希光光完成签到,获得积分10
11秒前
勤恳惮完成签到,获得积分10
13秒前
Wang完成签到,获得积分10
13秒前
丘比特应助白菜采纳,获得10
13秒前
希光光发布了新的文献求助10
14秒前
蔚亭完成签到,获得积分10
14秒前
嬴政飞完成签到,获得积分10
15秒前
zzzzz完成签到,获得积分10
16秒前
lixinyue完成签到 ,获得积分10
17秒前
soory完成签到,获得积分10
18秒前
取法乎上完成签到 ,获得积分10
19秒前
欣慰的书本完成签到 ,获得积分10
19秒前
御风完成签到,获得积分10
21秒前
吴大语完成签到,获得积分10
21秒前
格瑞格完成签到,获得积分10
23秒前
画卷完成签到 ,获得积分10
24秒前
橘子的哈哈怪完成签到,获得积分10
24秒前
25秒前
magic_sweets完成签到,获得积分10
25秒前
华仔应助樱香音子采纳,获得10
26秒前
Amy完成签到,获得积分10
28秒前
加油少年完成签到,获得积分10
28秒前
大媛大靳吃地瓜完成签到,获得积分10
29秒前
小怪兽完成签到,获得积分10
34秒前
yaya完成签到 ,获得积分10
36秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795639
求助须知:如何正确求助?哪些是违规求助? 3340708
关于积分的说明 10301290
捐赠科研通 3057251
什么是DOI,文献DOI怎么找? 1677539
邀请新用户注册赠送积分活动 805478
科研通“疑难数据库(出版商)”最低求助积分说明 762626