UAVformer: A Composite Transformer Network for Urban Scene Segmentation of UAV Images

人工智能 计算机视觉 分割 计算机科学 编码器 图像分割 模式识别(心理学) 操作系统
作者
Yi Shi,Xi Liu,Junjie Li,Ling Chen
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:133: 109019-109019 被引量:44
标识
DOI:10.1016/j.patcog.2022.109019
摘要

Urban scenes segmentation based on UAV (Unmanned aerial vehicle) view is a fundamental task for the applications of smart city such as city planning, land use monitoring, traffic monitoring, and crowd estimation. While urban scenes in UAV image characteristic by large scale variation of objects size and complexity background, which posed challenges to urban scenes segmentation of UAV image. The feature extracting backbone of existing networks cannot extract complex features of UAV image effectively, which limits the performance of urban scenes segmentation. To design segmentation network capable of extracting features of large scale variation urban ground scenes, this study proposed a novel composite transformer network for urban scenes segmentation of UAV image. A composite backbone with aggregation windows multi-head self-attention transformer blocks is proposed to make the extracted features more representatives by adaptive multi-level features fusion, and the full utilisation of contextual information and local information. Position attention modules are inserted in each stage between encoder and decoder to further enhance the spatial attention of extracted feature maps. Finally, a V-shaped decoder which is capable of utilising multi-level features is designed to get accurately dense prediction. The accuracy of urban scenes segmentation could significantly be enhanced in this way and successfully segmented the large scale variation objects from UAV views. Extensive ablation experiments and comparative experiments for the proposed network have been conducted on the public available urban scenes segmentation datasets for UAV imagery. Experimental results have demonstrated the effectiveness of designed network structure and the superiority of proposed network over state-of-the-art methods. Specifically, reached 53.2% mIoU on the UAVid dataset and 77.6% mIoU on the UDD6 dataset, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Owen应助Onism采纳,获得10
2秒前
zxw发布了新的文献求助10
2秒前
2秒前
bkagyin应助dajiejie采纳,获得10
2秒前
2秒前
3秒前
jia0发布了新的文献求助30
4秒前
4秒前
自由的松发布了新的文献求助10
4秒前
4秒前
彭于晏应助medsearcher采纳,获得10
4秒前
4秒前
莫道桑榆发布了新的文献求助10
4秒前
5秒前
6秒前
情怀应助无奈的老姆采纳,获得10
6秒前
李爱国应助qqq采纳,获得10
7秒前
7秒前
深情安青应助kunk40523采纳,获得30
8秒前
王二完成签到,获得积分20
8秒前
8秒前
9秒前
zhuiyu发布了新的文献求助10
9秒前
9秒前
9秒前
ZJJ完成签到,获得积分10
9秒前
10秒前
量子星尘发布了新的文献求助10
10秒前
星辰大海应助自由的松采纳,获得10
10秒前
坦率的秋烟完成签到,获得积分10
11秒前
zcz完成签到,获得积分10
11秒前
vousme完成签到 ,获得积分10
11秒前
H-C发布了新的文献求助10
11秒前
11秒前
梅梅完成签到,获得积分10
11秒前
11秒前
12秒前
充电宝应助zxw采纳,获得10
12秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Building Quantum Computers 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Medicine and the Navy, 1200-1900: 1815-1900 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4240533
求助须知:如何正确求助?哪些是违规求助? 3774287
关于积分的说明 11852627
捐赠科研通 3429539
什么是DOI,文献DOI怎么找? 1882328
邀请新用户注册赠送积分活动 934252
科研通“疑难数据库(出版商)”最低求助积分说明 840928