Lightweight, ultra-tough, 3D-architected hybrid carbon microlattices

材料科学 韧性 延展性(地球科学) 脆性 复合材料 结构材料 碳化 碳纤维 热解炭 抗弯强度 断裂韧性 热解 复合数 化学工程 工程类 蠕动 扫描电子显微镜
作者
James Utama Surjadi,Yongsen Zhou,Siping Huang,Liqiang Wang,Maoyuan Li,Shumin Fan,Xiaocui Li,Jingzhuo Zhou,Raymond H. W. Lam,Zuankai Wang,Yang Lü
出处
期刊:Matter [Elsevier BV]
卷期号:5 (11): 4029-4046 被引量:7
标识
DOI:10.1016/j.matt.2022.08.010
摘要

•Over 100× strength and 2× ductility increases in a 3D-printed photopolymer microlattice •Light yet strong hybrid carbon lattices can withstand ∼50% strain without fracture •A simple way to make robust biocompatible carbon composites of any shape and architecture A lightweight material with simultaneous high strength and ductility can be dubbed the “Holy Grail” of structural materials, but these properties are generally mutually exclusive. Thus far, pyrolytic carbon micro/nanolattices are a premium solution for ultra-high strength at low densities, but intrinsic brittleness and low toughness limits their structural applications. Here, we break the perception of pyrolyzed materials by demonstrating a low-cost, facile pyrolysis process, i.e., partial carbonization, to drastically enhance both the strength and ductility of a three-dimensional (3D)-printed brittle photopolymer microlattice simultaneously, resulting in ultra-high specific energy absorption of up to 60 J g−1 (>100 times higher than the original) without fracture at strains above 50%. Furthermore, the partially carbonized microlattice shows improved biocompatibility over its pure polymer counterpart, potentially unlocking its biomedical and multifunctional applications. This method would allow a new class of hybrid carbon mechanical metamaterials with lightweight, high toughness, and virtually any geometry. A lightweight material with simultaneous high strength and ductility can be dubbed the “Holy Grail” of structural materials, but these properties are generally mutually exclusive. Thus far, pyrolytic carbon micro/nanolattices are a premium solution for ultra-high strength at low densities, but intrinsic brittleness and low toughness limits their structural applications. Here, we break the perception of pyrolyzed materials by demonstrating a low-cost, facile pyrolysis process, i.e., partial carbonization, to drastically enhance both the strength and ductility of a three-dimensional (3D)-printed brittle photopolymer microlattice simultaneously, resulting in ultra-high specific energy absorption of up to 60 J g−1 (>100 times higher than the original) without fracture at strains above 50%. Furthermore, the partially carbonized microlattice shows improved biocompatibility over its pure polymer counterpart, potentially unlocking its biomedical and multifunctional applications. This method would allow a new class of hybrid carbon mechanical metamaterials with lightweight, high toughness, and virtually any geometry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深几许发布了新的文献求助10
刚刚
HXL完成签到 ,获得积分10
1秒前
正直的以亦完成签到,获得积分10
2秒前
从一从一完成签到,获得积分10
2秒前
2秒前
风趣的惜灵完成签到,获得积分10
2秒前
KiraShaw应助天真香之采纳,获得10
3秒前
wang完成签到,获得积分10
4秒前
皮卡皮卡丘完成签到,获得积分10
4秒前
Steven发布了新的文献求助50
4秒前
H-China完成签到,获得积分10
5秒前
6秒前
饮一杯为谁丶完成签到,获得积分10
6秒前
情怀应助七仔采纳,获得10
6秒前
6秒前
舒心的晟睿完成签到,获得积分10
7秒前
7秒前
gyj1发布了新的文献求助10
8秒前
sunyanghu369发布了新的文献求助10
8秒前
JamesPei应助Zora采纳,获得10
9秒前
vikey完成签到 ,获得积分10
9秒前
10秒前
科研通AI5应助Liangyu采纳,获得10
11秒前
11秒前
雪原小猫完成签到,获得积分10
11秒前
11秒前
天舞英姿完成签到,获得积分10
11秒前
12秒前
111发布了新的文献求助10
12秒前
12秒前
anan应助卓妮采纳,获得10
13秒前
13秒前
13秒前
13秒前
14秒前
雪原小猫发布了新的文献求助10
14秒前
14秒前
科研通AI5应助sunyanghu369采纳,获得10
15秒前
打打应助lalalaaaa采纳,获得10
15秒前
纸万发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
A study of torsion fracture tests 510
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4748170
求助须知:如何正确求助?哪些是违规求助? 4094981
关于积分的说明 12669982
捐赠科研通 3807233
什么是DOI,文献DOI怎么找? 2101745
邀请新用户注册赠送积分活动 1127005
关于科研通互助平台的介绍 1003650