亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CT-Based Radiomic Nomogram for the Prediction of Chronic Obstructive Pulmonary Disease in Patients with Lung cancer

列线图 医学 慢性阻塞性肺病 肺癌 接收机工作特性 逻辑回归 队列 放射科 肺功能测试 内科学
作者
TaoHu Zhou,Wenting Tu,Peng Dong,Shaofeng Duan,Xiuxiu Zhou,Yanqing Ma,Yun Wang,Tian Liu,Hanxiao Zhang,Yan Feng,Wenjun Huang,YanMing Ge,Shiyuan Liu,Zhaobin Li,Li Fan
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:30 (12): 2894-2903 被引量:13
标识
DOI:10.1016/j.acra.2023.03.021
摘要

To develop and validate a model for predicting chronic obstructive pulmonary disease (COPD) in patients with lung cancer based on computed tomography (CT) radiomic signatures and clinical and imaging features.We retrospectively enrolled 443 patients with lung cancer who underwent pulmonary function test as the primary cohort. They were randomly assigned to the training (n = 311) or validation (n = 132) set in a 7:3 ratio. Additionally, an independent external cohort of 54 patients was evaluated. The radiomic lung nodule signature was constructed using the least absolute shrinkage and selection operator algorithm, while key variables were selected using logistic regression to develop the clinical and combined models presented as a nomogram.COPD was significantly related to the radiomics signature in both cohorts. Moreover, the signature served as an independent predictor of COPD in the multivariate regression analysis. For the training, internal, and external cohorts, the area under the receiver operating characteristic curve (ROC, AUC) values of our radiomics signature for COPD prediction were 0.85, 0.85, and 0.76, respectively. Additionally, the AUC values of the radiomic nomogram for COPD prediction were 0.927, 0.879, and 0.762 for the three cohorts, respectively, which outperformed the other two models.The present study presents a nomogram that incorporates radiomics signatures and clinical and radiological features, which could be used to predict the risk of COPD in patients with lung cancer with one-stop chest CT scanning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
失眠思远发布了新的文献求助10
刚刚
CodeCraft应助儒雅老太采纳,获得10
1秒前
华仔应助甜甜亦丝采纳,获得10
18秒前
27秒前
今后应助曼曼采纳,获得10
28秒前
甜甜亦丝发布了新的文献求助10
34秒前
42秒前
44秒前
48秒前
曼曼发布了新的文献求助10
49秒前
曼曼完成签到,获得积分10
56秒前
FWCY发布了新的文献求助10
1分钟前
赘婿应助小婷君采纳,获得10
1分钟前
1分钟前
小婷君完成签到,获得积分10
1分钟前
小婷君发布了新的文献求助10
1分钟前
1分钟前
mir为少发布了新的文献求助10
1分钟前
mir为少完成签到,获得积分20
1分钟前
香蕉觅云应助喵喵采纳,获得10
2分钟前
华仔应助mir为少采纳,获得10
2分钟前
2分钟前
2分钟前
儒雅老太发布了新的文献求助10
2分钟前
喵喵发布了新的文献求助10
2分钟前
尊敬的小凡完成签到,获得积分10
2分钟前
熬夜猝死的我完成签到,获得积分10
2分钟前
FashionBoy应助喵喵采纳,获得10
3分钟前
3分钟前
喵喵发布了新的文献求助10
3分钟前
3分钟前
4分钟前
深情安青应助喵喵采纳,获得10
4分钟前
4分钟前
4分钟前
喵喵发布了新的文献求助10
4分钟前
KINGAZX完成签到 ,获得积分10
5分钟前
5分钟前
儒雅老太完成签到,获得积分20
5分钟前
QCB完成签到 ,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5078540
求助须知:如何正确求助?哪些是违规求助? 4297273
关于积分的说明 13388009
捐赠科研通 4120046
什么是DOI,文献DOI怎么找? 2256401
邀请新用户注册赠送积分活动 1260687
关于科研通互助平台的介绍 1194374