亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Physics Informed Machine Learning for Reservoir Connectivity Identification and Robust Production Forecasting

可解释性 人工神经网络 过度拟合 机器学习 人工智能 计算机科学 油藏计算 正规化(语言学) 循环神经网络
作者
M. Nagao,Akhil Datta‐Gupta,Tsubasa Onishi,Sathish Sankaran
出处
期刊:Spe Journal [Society of Petroleum Engineers]
卷期号:29 (09): 4527-4541 被引量:4
标识
DOI:10.2118/219773-pa
摘要

Summary Routine well-wise injection/production data contain significant information that can be used for closed-loop reservoir management and rapid field decision-making. Traditional physics-based numerical reservoir simulation can be computationally prohibitive for short-term decision cycles, and it requires a detailed geologic model. Reduced physics models provide an efficient simulator-free workflow but often have a limited range of applicability. Pure machine learning models lack physical interpretability and can have limited predictive power. To address these challenges, we propose hybrid models, combining machine learning and a physics-based approach, for rapid production forecasting and reservoir connectivity characterization using routine injection/production and pressure data. Our framework takes routine measurements, such as injection rate and pressure data, as inputs and multiphase production rates as outputs. We combine reduced physics models into a neural network architecture by utilizing two different approaches. In the first approach, the reduced physics model is used for preprocessing to obtain approximate solutions that feed it into a neural network as input. This physics-based input feature can reduce the model complexity and provide significant improvement in prediction performance. In the second approach, a physics-informed neural network (PINN) is applied. The residual terms are augmented in the neural network loss function as physics-based regularization that relies on the governing partial differential equations (PDE). Reduced physics models are used for the governing PDE to enable efficient neural network training. The regularization allows the model to avoid overfitting and provides better predictive performance. Our proposed hybrid models are first validated using a 2D benchmark reservoir simulation case and then applied to a field-scale reservoir case to show the robustness and efficiency of the method. The hybrid models are shown to provide prediction performance that is superior to pure machine learning models and reduced physics models in terms of multiphase production rates. Specifically, in the second method with PINN, the trained hybrid neural network model satisfies the reduced physics system, making it physically interpretable, and provides interwell connectivity in terms of well flux allocation. The flux allocation estimated from the hybrid model was compared with streamline-based flux allocation, and reasonable agreement was obtained. By combining the reduced physics model with the efficacy of deep learning, model calibration can be done very efficiently without constructing a geologic model. The proposed hybrid models with physics-based regularization and physics-based preprocessing provide novel approaches to augment data-driven models with underlying physics to build interpretable models for understanding reservoir connectivity between wells and for robust future production forecasting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ayayaya完成签到 ,获得积分10
25秒前
chenlc971125完成签到 ,获得积分10
28秒前
乐乐应助科研通管家采纳,获得10
29秒前
35秒前
40秒前
41秒前
cheng发布了新的文献求助10
45秒前
心灵美砖头完成签到,获得积分10
1分钟前
cheng完成签到,获得积分20
1分钟前
领导范儿应助任性的岱周采纳,获得10
1分钟前
2分钟前
2分钟前
zhen完成签到,获得积分10
2分钟前
2分钟前
许愿发布了新的文献求助100
2分钟前
任性的岱周完成签到,获得积分10
2分钟前
英姑应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
2分钟前
倩倩完成签到 ,获得积分10
3分钟前
3分钟前
鱼死网破发布了新的文献求助10
3分钟前
大模型应助鱼死网破采纳,获得10
3分钟前
4分钟前
小蘑菇应助科研通管家采纳,获得10
4分钟前
张土豆完成签到 ,获得积分10
4分钟前
小白菜完成签到,获得积分10
5分钟前
强强发布了新的文献求助10
5分钟前
万能图书馆应助无误采纳,获得80
5分钟前
小样发布了新的文献求助10
5分钟前
OCDer应助无误采纳,获得80
6分钟前
6分钟前
无误发布了新的文献求助80
6分钟前
思源应助科研通管家采纳,获得10
6分钟前
赘婿应助科研通管家采纳,获得10
6分钟前
Siren发布了新的文献求助10
6分钟前
6分钟前
123321完成签到 ,获得积分10
7分钟前
Rongbid完成签到 ,获得积分10
7分钟前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of deresuscitation management vs. usual care on ventilator-free days in patients with abdominal septic shock 200
Erectile dysfunction From bench to bedside 200
Advanced Introduction to Behavioral Law and Economics 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3824996
求助须知:如何正确求助?哪些是违规求助? 3367312
关于积分的说明 10445199
捐赠科研通 3086684
什么是DOI,文献DOI怎么找? 1698167
邀请新用户注册赠送积分活动 816652
科研通“疑难数据库(出版商)”最低求助积分说明 769880