Multi-criterion analysis-based artificial intelligence system for condition monitoring of electrical transformers

变压器 溶解气体分析 模糊逻辑 可靠性工程 专家系统 工程类 变压器油 数据挖掘 计算机科学 人工智能 电压 电气工程
作者
M. Gopi,Chilaka Ranga
出处
期刊:Insight [British Institute of Non-Destructive Testing]
卷期号:66 (6): 368-376 被引量:1
标识
DOI:10.1784/insi.2024.66.6.368
摘要

In this present paper, a novel multi-criterion-based fuzzy logic (FL) expert system using different membership functions (MFs) is proposed to determine the overall health index (OHI) of electrical transformers. 30 oil samples from different field transformers installed at various locations in Himachal Pradesh, India, are collected for the analysis and various diagnostic tests are conducted on each of the oil samples. The diagnostic testing data are utilised for the proposed methodology. Initially, the diagnostic data are normalised using the well-known multi-criterion analysis (MCA) method. The normalised input data are grouped into three grades, ie total dissolved combustible gases (TDCGs), oil insulation and paper insulation. Furthermore, a fuzzy logic model is designed based on the three different grades. Output health indices are determined for each of the samples. Comparison and validation of the proposed model is conducted with the expert model, as well as the preknown health status of 150 transformers installed in the Gulf region. The expert model is designed with a trapezoidal membership function, whereas the proposed model considers the popular Gauss-2. From the comparison, it is observed that the accuracy of the proposed model is 98%, while the accuracy of the expert model is 96%, making the proposed model more accurate. Moreover, a plan of action for proper maintenance is also recommended for each transformer, based on the evaluated health index. The proper maintenance of transformers leads to improvements in their service life. The present work is beneficial not only for transformer utilities but also for customers. The model is straightforward to understand, even for inexperienced staff and maintenance managers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宝z发布了新的文献求助10
刚刚
Brian完成签到,获得积分10
刚刚
1秒前
2秒前
迷你的颖发布了新的文献求助10
3秒前
3秒前
tx2021完成签到,获得积分10
3秒前
TTTaT完成签到,获得积分10
4秒前
大白发布了新的文献求助10
4秒前
4秒前
搞怪文轩完成签到,获得积分10
5秒前
司空豁发布了新的文献求助10
6秒前
SMU小刘~完成签到,获得积分20
7秒前
我爱金哥发布了新的文献求助10
7秒前
丘比特应助沉静盼易采纳,获得10
7秒前
明理的海蓝完成签到 ,获得积分10
8秒前
dd完成签到,获得积分10
8秒前
小蘑菇应助INU采纳,获得10
8秒前
慕青应助清欢采纳,获得10
9秒前
科研小王发布了新的文献求助10
9秒前
11秒前
在水一方应助热情的安彤采纳,获得30
13秒前
Owen应助独特的从露采纳,获得10
15秒前
迷你的颖完成签到,获得积分10
15秒前
英俊的铭应助我爱金哥采纳,获得10
16秒前
YangJawe发布了新的文献求助10
16秒前
tx2021发布了新的文献求助10
16秒前
17秒前
细心的梦芝完成签到,获得积分10
17秒前
17秒前
司空豁发布了新的文献求助10
18秒前
Xiaoxiao应助小兰花采纳,获得10
19秒前
传奇3应助小兰花采纳,获得10
19秒前
天天快乐应助科研小王采纳,获得10
20秒前
JamesPei应助Lynn采纳,获得10
21秒前
22秒前
聪慧的伟发布了新的文献求助10
22秒前
23秒前
柯一一应助外向的匕采纳,获得10
23秒前
领导范儿应助Reid采纳,获得10
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Impact of water dispenser establishment on drinking water availability and health status of peri-urban community 560
Implantable Technologies 500
Theories of Human Development 400
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3919383
求助须知:如何正确求助?哪些是违规求助? 3464577
关于积分的说明 10934009
捐赠科研通 3192866
什么是DOI,文献DOI怎么找? 1764347
邀请新用户注册赠送积分活动 854845
科研通“疑难数据库(出版商)”最低求助积分说明 794458