Multimodal Decoupled Distillation Graph Neural Network for Emotion Recognition in Conversation

对话 计算机科学 人工神经网络 蒸馏 人工智能 图形 语音识别 自然语言处理 模式识别(心理学) 理论计算机科学 心理学 沟通 化学 有机化学
作者
Yijing Dai,Yingjian Li,Dongpeng Chen,Jinxing Li,Guangming Lu
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (10): 9910-9924 被引量:1
标识
DOI:10.1109/tcsvt.2024.3405406
摘要

Graph Neural Networks (GNNs) have attracted increasing attentions for multimodal Emotion Recognition in Conversation (ERC) due to their good performance in contextual understanding. However, most existing GNN-based methods suffer from two challenges: 1) How to explore and propagate appropriate information in a conversational graph. Typical GNNs in ERC neglect to mine the emotion commonality and discrepancy in the local neighborhood, leading to learn similar embbedings for connected nodes. However, the embeddings of these connected nodes are supposed to be distinguishable as they belong to different speakers with different emotions. 2) Most existing works apply simple concatenation or co-occurrence prior for modality combination, failing to fully capture the emotional information of multiple modalities in relationship modeling. In this paper, we propose a multimodal Decoupled Distillation Graph Neural Network (D 2 GNN) to address the above challenges. Specifically, D 2 GNN decouples the input features into emotion-aware and emotion-agnostic ones on the emotion category-level, aiming to capture emotion commonality and implicit emotion information, respectively. Moreover, we design a new message passing mechanism to separately propagate emotion-aware and -agnostic knowledge between nodes according to speaker dependency in two GNN-based modules, exploring the correlations of utterances and alleviating the similarities of embeddings. Furthermore, a multimodal distillation unit is performed to obtain the distinguishable embeddings by aggregating unimodal decoupled features. Experimental results on two ERC benchmarks demonstrate the superiority of the proposed model. Code is available at https://github.com/gityider/D2GNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
萌萌哒完成签到,获得积分10
2秒前
所所应助123456采纳,获得10
2秒前
3秒前
ZSY发布了新的文献求助10
5秒前
MchemG应助kitwang采纳,获得10
6秒前
7秒前
yaoyao发布了新的文献求助10
7秒前
Jnest发布了新的文献求助10
8秒前
9秒前
雾霭迷茫发布了新的文献求助10
12秒前
Lx030324发布了新的文献求助10
13秒前
14秒前
Jnest完成签到,获得积分10
14秒前
乐乐乐乐乐乐应助余可馨采纳,获得10
14秒前
17秒前
思源应助风趣康采纳,获得10
17秒前
大模型应助coc采纳,获得10
18秒前
20秒前
zz应助科研通管家采纳,获得10
20秒前
慕青应助科研通管家采纳,获得10
20秒前
accepted应助科研通管家采纳,获得20
20秒前
小蘑菇应助科研通管家采纳,获得10
20秒前
打打应助科研通管家采纳,获得10
20秒前
顾矜应助科研通管家采纳,获得10
20秒前
20秒前
20秒前
20秒前
neymar发布了新的文献求助10
21秒前
李_完成签到,获得积分10
22秒前
Rondab应助努力学习采纳,获得10
23秒前
少十七完成签到,获得积分10
23秒前
mmguo116应助奇奇采纳,获得30
23秒前
核平铀善完成签到,获得积分10
27秒前
neymar完成签到,获得积分20
31秒前
33秒前
34秒前
DASDSADASDA完成签到,获得积分20
35秒前
淇淇发布了新的文献求助10
35秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4051988
求助须知:如何正确求助?哪些是违规求助? 3590055
关于积分的说明 11409710
捐赠科研通 3316675
什么是DOI,文献DOI怎么找? 1824325
邀请新用户注册赠送积分活动 896051
科研通“疑难数据库(出版商)”最低求助积分说明 817176