Clarify the contribution of shallow and deep interfacial traps to the transistor-type optoelectronic synaptic device

材料科学 光电子学 晶体管 薄膜晶体管 纳米技术 图层(电子) 电气工程 电压 工程类
作者
Jiyuan Wei,Liangqin Zeng,Lijia Chen,Yanlian Lei,Lixiang Chen,Qiaoming Zhang
出处
期刊:Surfaces and Interfaces [Elsevier BV]
卷期号:51: 104587-104587 被引量:3
标识
DOI:10.1016/j.surfin.2024.104587
摘要

Recently, transistor-type optoelectronic synaptic device has garnered widespread attention due to its high potential for realizing artificial visual systems and neuromorphic computing. However, some basic mechanisms, such as the contribution of shallow and deep traps on the synaptic behavior, are still not fully understood. In this work, a channel-only transistor-type optoelectronic synaptic device has been employed as platform to clarify the contribution of shallow and deep traps to the synaptic response. We firstly demonstrated that the channel-only transistor-type synaptic device can successfully mimic almost all synaptic behavior, such as excitatory postsynaptic current spike (ΔEPSC), paired-pulse facilitation (PPF), etc. And then, two individual double-exponential models have been employed to fit the generation and decay part of ΔEPSC response to distinguish the role of shallow and deep traps on the synaptic behavior. The results suggest that the shallow trap gives rise to the fast response in both generation and decay component, and the deep trap contributes to the slow component in both generation and decay part. In addition, the number of deep traps is critical to determine the metastable current in the decay part because of the photogating effect. This explanation has been further confirmed by increasing the number of electrons that can be captured by increasing the light pulse intensity, and tuning the number of trap sites by storing the synaptic device in ambient environment or functionalizing the SiO2 surface with SAM agent containing strong electron withdrawing end group. Thus, this work not only clarify the contribution of shallow and deep traps, but also provide several strategies to tune the synaptic behavior.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
dian发布了新的文献求助10
2秒前
2秒前
yuan完成签到,获得积分10
2秒前
4秒前
Merge发布了新的文献求助10
5秒前
lml完成签到,获得积分10
5秒前
5秒前
宋天宇完成签到,获得积分20
5秒前
zhongyanfen发布了新的文献求助10
5秒前
6秒前
赫若魔应助科研通管家采纳,获得10
6秒前
弥漫迟发布了新的文献求助10
6秒前
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
阿药君完成签到,获得积分20
6秒前
科研通AI6应助科研通管家采纳,获得20
6秒前
6秒前
蛋蛋1发布了新的文献求助10
6秒前
yznfly应助科研通管家采纳,获得30
6秒前
科研通AI5应助小白采纳,获得10
7秒前
俊逸的之柔完成签到,获得积分20
8秒前
MikeBot完成签到,获得积分10
8秒前
Hello应助务实飞丹采纳,获得10
8秒前
8秒前
学术混子发布了新的文献求助10
9秒前
爆螺钉发布了新的文献求助10
9秒前
大胆剑封完成签到,获得积分10
9秒前
田様应助卢敏明采纳,获得10
10秒前
11秒前
不久后扽下二号完成签到,获得积分20
15秒前
15秒前
15秒前
15秒前
欢呼的以蓝完成签到,获得积分10
16秒前
咩咩羊完成签到 ,获得积分10
19秒前
彭于晏应助huashengmi采纳,获得10
19秒前
19秒前
小吉利发布了新的文献求助10
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
Progress and Regression 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
National standards & grade-level outcomes for K-12 physical education 400
Vertebrate Palaeontology, 5th Edition 210
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4818891
求助须知:如何正确求助?哪些是违规求助? 4128156
关于积分的说明 12775613
捐赠科研通 3867575
什么是DOI,文献DOI怎么找? 2128272
邀请新用户注册赠送积分活动 1149090
关于科研通互助平台的介绍 1044698