亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DenseSPH-YOLOv5: An automated damage detection model based on DenseNet and Swin-Transformer prediction head-enabled YOLOv5 with attention mechanism

计算机科学 人工智能 特征提取 目标检测 最小边界框 块(置换群论) 深度学习 模式识别(心理学) 机器学习 数据挖掘 几何学 数学 图像(数学)
作者
Arunabha M. Roy,Jayabrata Bhaduri
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:56: 102007-102007 被引量:163
标识
DOI:10.1016/j.aei.2023.102007
摘要

Computer vision-based up-to-date accurate damage classification and localization are of decisive importance for infrastructure monitoring, safety, and the serviceability of civil infrastructure. Current state-of-the-art deep learning (DL)-based damage detection models, however, often lack superior feature extraction capability in complex and noisy environments, limiting the development of accurate and reliable object distinction. To this end, we present DenseSPH-YOLOv5, a real-time DL-based high-performance damage detection model where DenseNet blocks have been integrated with the backbone to improve in preserving and reusing critical feature information. Additionally, convolutional block attention modules (CBAM) have been implemented to improve attention performance mechanisms for strong and discriminating deep spatial feature extraction that results in superior detection under various challenging environments. Moreover, an additional feature fusion layers and a Swin-Transformer Prediction Head (SPH) have been added leveraging advanced self-attention mechanism for more efficient detection of multiscale object sizes and simultaneously reducing the computational complexity. Evaluating the model performance in large-scale Road Damage Dataset (RDD-2018), at a detection rate of 62.4 FPS, DenseSPH-YOLOv5 obtains a mean average precision (mAP) value of 85.25%, F1-score of 81.18%, and precision (P) value of 89.51% outperforming current state-of-the-art models. The present research provides an effective and efficient damage localization model addressing the shortcoming of existing DL-based damage detection models by providing highly accurate localized bounding box prediction. Current work constitutes a step towards an accurate and robust automated damage detection system in real-time in-field applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐伟康完成签到 ,获得积分0
1秒前
崔柯梦发布了新的文献求助10
27秒前
在水一方应助崔柯梦采纳,获得10
32秒前
NexusExplorer应助liudy采纳,获得10
41秒前
46秒前
dopamine发布了新的文献求助30
54秒前
arsenal完成签到 ,获得积分10
59秒前
59秒前
liudy完成签到,获得积分10
1分钟前
liudy发布了新的文献求助10
1分钟前
1分钟前
天天快乐应助王其超采纳,获得10
2分钟前
2分钟前
王其超发布了新的文献求助10
2分钟前
石头完成签到,获得积分10
2分钟前
万能图书馆应助王其超采纳,获得10
2分钟前
3分钟前
王其超发布了新的文献求助10
3分钟前
科研通AI2S应助科研通管家采纳,获得30
3分钟前
4分钟前
dwadwa发布了新的文献求助10
4分钟前
所所应助奶茶田田采纳,获得10
4分钟前
dwadwa完成签到,获得积分20
4分钟前
4分钟前
xizq发布了新的文献求助10
4分钟前
巫马百招完成签到,获得积分10
5分钟前
星辰大海应助王其超采纳,获得10
5分钟前
完美世界应助科研通管家采纳,获得10
5分钟前
光亮向露完成签到,获得积分20
5分钟前
5分钟前
王其超发布了新的文献求助10
6分钟前
6分钟前
xizq完成签到,获得积分10
6分钟前
6分钟前
ZH的天方夜谭完成签到,获得积分10
6分钟前
江南之南完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
田様应助王其超采纳,获得10
6分钟前
SciGPT应助dwadwa采纳,获得10
6分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Plasmonics 400
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Towards a spatial history of contemporary art in China 400
Ecology, Socialism and the Mastery of Nature: A Reply to Reiner Grundmann 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3847736
求助须知:如何正确求助?哪些是违规求助? 3390439
关于积分的说明 10561554
捐赠科研通 3110793
什么是DOI,文献DOI怎么找? 1714535
邀请新用户注册赠送积分活动 825272
科研通“疑难数据库(出版商)”最低求助积分说明 775453