亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multiobjective Evolutionary Generative Adversarial Network Compression for Image Translation

计算机科学 子网 图像翻译 人工智能 背景(考古学) 进化算法 多目标优化 帕累托原理 机器学习 图像(数学) 数学优化 数学 计算机网络 古生物学 生物
作者
Yao Zhou,Bing Hu,Xianglei Yuan,Kaide Huang,Yi Zhang,Gary G. Yen
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:28 (3): 798-809 被引量:13
标识
DOI:10.1109/tevc.2023.3261135
摘要

Generative Adversarial Networks (GANs) have achieved remarkable success in image translation tasks. However, its prohibitive computational overhead has been a major hurdle for deployment on resource constrained platforms. Due to the training instability and the complicated network architecture, existing model acceleration techniques cannot appropriately handle the GAN compression problem. To cope with these difficulties, we propose a multi-objective evolutionary algorithm to compress GAN models in the context of image translation tasks, which is termed as MEGC. Particularly, the conflict between the computational cost of the GAN model and the quality of generated image is explicitly modeled as a two-objective optimization problem, and the evolved Pareto set is utilized to guide the sampling process during supernet training, which can in turn divert the focus of the supernet training to well-performing compact subnets. Besides, an evaluation-free strategy is introduced to facilitate exploration in the search space while incurring no extra computational cost. Based on the above design, the proposed MEGC eliminates the requirement of subnet searching in the post-processing procedure. Experiments on image translation tasks under paired and unparied settings demonstrate the effectiveness of the proposed MEGC on reducing the computational cost of GANs while improving the quality of generated images compared to those of the full models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机灵的茹妖应助Said1223采纳,获得10
12秒前
懦弱的问芙完成签到,获得积分10
36秒前
ceeray23应助科研通管家采纳,获得10
1分钟前
herococa应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
Said1223完成签到,获得积分10
1分钟前
鲤角兽完成签到,获得积分10
1分钟前
2分钟前
TrungHieuPham完成签到,获得积分10
4分钟前
charliechen完成签到 ,获得积分10
4分钟前
huangzsdy完成签到,获得积分10
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
herococa应助科研通管家采纳,获得10
5分钟前
ceeray23应助科研通管家采纳,获得10
5分钟前
小蘑菇应助欣喜的不惜采纳,获得10
6分钟前
啊啊啊啊啊啊啊啊啊啊完成签到 ,获得积分10
7分钟前
Tumumu完成签到,获得积分10
8分钟前
小婷君完成签到 ,获得积分10
9分钟前
ceeray23应助科研通管家采纳,获得10
9分钟前
yuiip完成签到 ,获得积分10
11分钟前
鸭鸭完成签到 ,获得积分10
11分钟前
cy0824完成签到 ,获得积分10
11分钟前
Sandy应助科研通管家采纳,获得20
11分钟前
ceeray23应助科研通管家采纳,获得10
11分钟前
ceeray23应助科研通管家采纳,获得10
11分钟前
herococa应助科研通管家采纳,获得10
11分钟前
11分钟前
楚楚完成签到 ,获得积分10
11分钟前
11分钟前
zhongu应助mashibeo采纳,获得10
12分钟前
12分钟前
13分钟前
无情的君浩应助doorxieyeah采纳,获得10
13分钟前
13分钟前
瑜凡发布了新的文献求助10
13分钟前
ceeray23应助科研通管家采纳,获得10
13分钟前
herococa应助科研通管家采纳,获得10
13分钟前
ceeray23应助科研通管家采纳,获得10
13分钟前
ceeray23应助科研通管家采纳,获得10
13分钟前
herococa应助科研通管家采纳,获得20
13分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3946196
求助须知:如何正确求助?哪些是违规求助? 3491087
关于积分的说明 11058855
捐赠科研通 3222020
什么是DOI,文献DOI怎么找? 1780755
邀请新用户注册赠送积分活动 865817
科研通“疑难数据库(出版商)”最低求助积分说明 800063