亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

FedProf: Selective Federated Learning based on Distributional Representation Profiling

计算机科学 仿形(计算机编程) 地点 数据挖掘 匹配(统计) 信息隐私 代表(政治) 外部数据表示 机器学习 理论计算机科学 人工智能 数学 哲学 统计 语言学 互联网隐私 政治 政治学 法学 操作系统
作者
Wentai Wu,Ligang He,Weiwei Lin,Carsten Maple
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:8
标识
DOI:10.1109/tpds.2023.3265588
摘要

Federated Learning (FL) has shown great potential as a privacy-preserving solution to learning from decentralized data that are only accessible to end devices (i.e., clients).The data locality constraint offers strong privacy protection but also makes FL sensitive to the condition of local data.Apart from statistical heterogeneity, a large proportion of the clients, in many scenarios, are probably in possession of low-quality data that are biased, noisy or even irrelevant.As a result, they could significantly slow down the convergence of the global model we aim to build and also compromise its quality.In light of this, we first present a new view of local data by looking into the representation space and observing that they converge in distribution to Normal distributions before activation.We provide theoretical analysis to support our finding.Further, we propose FEDPROF, a novel algorithm for optimizing FL over non-IID data of mixed quality.The key of our approach is a distributional representation profiling and matching scheme that uses the global model to dynamically profile data representations and allows for low-cost, lightweight representation matching.Using the scheme we sample clients adaptively in FL to mitigate the impact of low-quality data on the training process.We evaluated our solution with extensive experiments on different tasks and data conditions under various FL settings.The results demonstrate that the selective behavior of our algorithm leads to a significant reduction in the number of communication rounds and the amount of time (up to 2.4× speedup) for the global model to converge and also provides accuracy gain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小白菜完成签到,获得积分10
42秒前
冬去春来完成签到 ,获得积分10
44秒前
50秒前
54秒前
59秒前
依然灬聆听完成签到,获得积分10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Akim应助科研通管家采纳,获得10
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
1分钟前
xuhanghang发布了新的文献求助10
2分钟前
2分钟前
从容芮完成签到,获得积分0
2分钟前
英俊的铭应助科研通管家采纳,获得10
3分钟前
科研通AI5应助科研通管家采纳,获得10
3分钟前
tlh完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
无花果应助自由擎汉采纳,获得10
3分钟前
研友_8y2G0L完成签到,获得积分10
4分钟前
任无施发布了新的文献求助10
4分钟前
冇_完成签到 ,获得积分10
4分钟前
非常甜的菜头完成签到,获得积分10
4分钟前
4分钟前
亚当完成签到 ,获得积分10
4分钟前
4分钟前
852应助平淡雪糕采纳,获得30
4分钟前
liuxiaoying发布了新的文献求助10
4分钟前
5分钟前
andrele应助科研通管家采纳,获得10
5分钟前
平淡雪糕发布了新的文献求助30
5分钟前
gnufgg完成签到,获得积分10
5分钟前
自由擎汉发布了新的文献求助20
5分钟前
隐形曼青应助平淡雪糕采纳,获得10
5分钟前
香蕉觅云应助任无施采纳,获得10
6分钟前
6分钟前
6分钟前
嗯嗯嗯哦哦哦完成签到 ,获得积分10
6分钟前
平淡雪糕发布了新的文献求助10
6分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 520
Introduction to Strong Mixing Conditions Volumes 1-3 500
Fine Chemicals through Heterogeneous Catalysis 430
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795553
求助须知:如何正确求助?哪些是违规求助? 3340578
关于积分的说明 10300696
捐赠科研通 3057127
什么是DOI,文献DOI怎么找? 1677500
邀请新用户注册赠送积分活动 805424
科研通“疑难数据库(出版商)”最低求助积分说明 762529