Point-of-interest Recommendation using Deep Semantic Model

计算机科学 钥匙(锁) 深度学习 语义学(计算机科学) 人工智能 推荐系统 弹道 编码(内存) 任务(项目管理) 情报检索 语义数据模型 机器学习 自然语言处理 物理 计算机安全 管理 天文 经济 程序设计语言
作者
Ziwei Wang,Jun Zeng,Junhao Wen,Min Gao,Wei Zhou
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:231: 120727-120727 被引量:13
标识
DOI:10.1016/j.eswa.2023.120727
摘要

Under the current paradigm, POI (Point-of-interest) recommendation tasks are mainly focused on representation learning. Therefore, the quality of the trajectory embeddings plays a key role in prediction. Existing methods mainly focus on learning the contextual information of check-in sequences, however, the contextual information is not the only medium for establishing state transitions between check-ins. Semantic information has been proven a powerful medium that can be learned with semantic data and injected into the source sequential embeddings for better prediction in other recommendation tasks. Unfortunately, for POI recommendation tasks, most of the key elements in the trajectory are discrete and there is no explicit semantic information. Therefore we argue that the deep and rich semantic information hidden in trajectories has not been fully exploited currently and how learning the deep semantic information from discrete trajectory data to improve the quality of the trajectory embedding is the key to further improving recommendation performance. We propose DSMR, a deep semantic recommender model for the next POI recommendation task to mitigate the issue. Specifically, we use prompt engineering to carry out continuous semantic modeling of discrete trajectory data and use the pre-trained language model to extract its implicit deep semantic information to establish causal transfer constraints between check-ins through the medium of semantics. Meanwhile, we propose a new position encoding function, temporal interval encoding, to avoid the neglect of temporal information of the check-ins sequence under the self-attention mechanism. Extensive experiments on two real-world datasets demonstrate the superior performance of our model to state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夜安完成签到 ,获得积分10
1秒前
Wind完成签到,获得积分10
2秒前
shuiwuming发布了新的文献求助10
3秒前
4秒前
LCCCC完成签到,获得积分10
6秒前
7秒前
CipherSage应助Jiayou Zhang采纳,获得10
7秒前
废废废完成签到,获得积分10
7秒前
8秒前
想不想发布了新的文献求助10
10秒前
10秒前
灵巧斌发布了新的文献求助20
11秒前
11秒前
霍巧凡发布了新的文献求助10
13秒前
NexusExplorer应助Kate采纳,获得10
14秒前
CipherSage应助zyk采纳,获得10
15秒前
CXSCXD完成签到,获得积分10
16秒前
科研通AI5应助lzcnextdoor采纳,获得10
17秒前
科研通AI2S应助satchzhao采纳,获得10
18秒前
李健应助小张采纳,获得10
18秒前
俭朴依白完成签到,获得积分10
18秒前
大模型应助Jiayou Zhang采纳,获得10
19秒前
巫马夜安完成签到,获得积分10
19秒前
酷波er应助科研通管家采纳,获得10
19秒前
搜集达人应助科研通管家采纳,获得10
19秒前
子凡应助科研通管家采纳,获得10
19秒前
小二郎应助科研通管家采纳,获得10
20秒前
20秒前
pluto应助科研通管家采纳,获得10
20秒前
端庄的白开水完成签到,获得积分10
20秒前
22秒前
23秒前
24秒前
codwest完成签到,获得积分10
25秒前
26秒前
狄百招发布了新的文献求助10
27秒前
lizhiqian2024发布了新的文献求助10
29秒前
红老鼠924发布了新的文献求助10
29秒前
30秒前
默默琳完成签到,获得积分10
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781746
求助须知:如何正确求助?哪些是违规求助? 3327336
关于积分的说明 10230494
捐赠科研通 3042204
什么是DOI,文献DOI怎么找? 1669890
邀请新用户注册赠送积分活动 799391
科研通“疑难数据库(出版商)”最低求助积分说明 758792